HZB coordinates European collaboration to develop active agents against Corona

The MX team at BESSY II specialises in analysing protein structures. This can also accelerate the development of drugs against COVID-19.

The MX team at BESSY II specialises in analysing protein structures. This can also accelerate the development of drugs against COVID-19. © HZB

X-ray structure analysis at BESSY II enables the systematic testing of many thousands of molecules that could inhibit the reproduction and virulence of SARS-CoV2 viruses. Now, a team at HZB with partners from Austria and the Czech Republic has set up the NECESSITY project to investigate more than 8000 compounds in a high-throughput procedure and develop active agents against COVID-19.

The COVID-19 pandemic is far from over. Despite the rapid development of vaccines, it is not possible, for various reasons, to give everyone lasting protection through vaccination quickly enough. But so far, there are hardly any effective drugs for patients severely affected by COVID-19. Therapy is mainly limited to the administration of steroid drugs to control the immune reaction and artificial respiration.

Researchers around HZB-scientist Dr. Christian Feiler have initiated a three-party European research study termed NECESSITY, led by project partner Prof. Dr. Klaus Scheffzek (Med. University Innsbruck, Austria). Their goal is to investigate detailed interactions between Sars-CoV-2 proteins and chemical compounds developed and provided by Dr. Vladimír Kryštof (Palacký University Olomouc, the Czech Republic), using structural and biochemical approaches. X-ray structure analysis at BESSY II enables the systematic testing of many thousands of molecules that could inhibit the reproduction and virulence of SARS-CoV2 viruses. This research is funded by the Austrian Science Fund (FWF), the German Research Foundation (DFG), and the Czech Science Foundation (GACR).

At the light source BESSY II, which is operated by HZB, the structural analysis of macromolecules provides a fantastic tool to accelerate the development of effective substances against the SARS-CoV2 virus. The three-dimensional structure of the so-called viral main protease was determined at BESSY II for the first time at the beginning of 2020. This enzyme is indispensable for virus replication. However, it is not sufficient to investigate this one target, which is why several viral target proteins are being addressed in the NECESSITY project. The consortium will explore more than 8000 compounds at the MX-beamlines of BESSY II in a high-throughput procedure and identify substances from them that could dock to the main protease of SARS-CoV-2 or other target proteins. These drug-like candidates originate from a unique library generated and collected by Dr. Vladimír Kryštof, Palacký University Olomouc. All compounds are either already approved for the treatment of other diseases or are in various clinical phases. If hits were to come out of this, it would be possible to develop drugs against COVID-19 remarkably quickly. Prof. Dr. Klaus Scheffzek and his team at the Medical University in Innsbruck can investigate the hit compounds in detail using biophysical methods and initiate the first virological studies. Prof. Dr. Christian Drosten, Director of the Institute of Virology at Charité Berlin, and other experts are also on board as advisors and partners.

"In the NECESSITY project, we bring together expertise from different fields," says Feiler. "Together, we have planned a very efficient interdisciplinary workflow to identify antiviral substances that can be used as effective drugs against COVID-19 and beyond as quickly as possible."  

The project is funded by the German Research Foundation and the corresponding funding organizations in Austria and the Czech Republic for 36 months with almost 800,000 Euros.

 

 

 

arö

  • Copy link

You might also be interested in

  • What Zinc concentration in teeth reveals
    Science Highlight
    19.02.2026
    What Zinc concentration in teeth reveals
    Teeth are composites of mineral and protein, with a bulk of bony dentin that is highly porous. This structure is allows teeth to be both strong and sensitive. Besides calcium and phosphate, teeth contain trace elements such as zinc. Using complementary microscopy imaging techniques, a team from Charité Berlin, TU Berlin and HZB has quantified the distribution of natural zinc along and across teeth in 3 dimensions. The team found that, as porosity in dentine increases towards the pulp, zinc concentration increases 5~10 fold. These results help to understand the influence of widely-used zinc-containing biomaterials (e.g. filling) and could inspire improvements in dental medicine.
  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.