HZB coordinates European collaboration to develop active agents against Corona

The MX team at BESSY II specialises in analysing protein structures. This can also accelerate the development of drugs against COVID-19.

The MX team at BESSY II specialises in analysing protein structures. This can also accelerate the development of drugs against COVID-19. © HZB

X-ray structure analysis at BESSY II enables the systematic testing of many thousands of molecules that could inhibit the reproduction and virulence of SARS-CoV2 viruses. Now, a team at HZB with partners from Austria and the Czech Republic has set up the NECESSITY project to investigate more than 8000 compounds in a high-throughput procedure and develop active agents against COVID-19.

The COVID-19 pandemic is far from over. Despite the rapid development of vaccines, it is not possible, for various reasons, to give everyone lasting protection through vaccination quickly enough. But so far, there are hardly any effective drugs for patients severely affected by COVID-19. Therapy is mainly limited to the administration of steroid drugs to control the immune reaction and artificial respiration.

Researchers around HZB-scientist Dr. Christian Feiler have initiated a three-party European research study termed NECESSITY, led by project partner Prof. Dr. Klaus Scheffzek (Med. University Innsbruck, Austria). Their goal is to investigate detailed interactions between Sars-CoV-2 proteins and chemical compounds developed and provided by Dr. Vladimír Kryštof (Palacký University Olomouc, the Czech Republic), using structural and biochemical approaches. X-ray structure analysis at BESSY II enables the systematic testing of many thousands of molecules that could inhibit the reproduction and virulence of SARS-CoV2 viruses. This research is funded by the Austrian Science Fund (FWF), the German Research Foundation (DFG), and the Czech Science Foundation (GACR).

At the light source BESSY II, which is operated by HZB, the structural analysis of macromolecules provides a fantastic tool to accelerate the development of effective substances against the SARS-CoV2 virus. The three-dimensional structure of the so-called viral main protease was determined at BESSY II for the first time at the beginning of 2020. This enzyme is indispensable for virus replication. However, it is not sufficient to investigate this one target, which is why several viral target proteins are being addressed in the NECESSITY project. The consortium will explore more than 8000 compounds at the MX-beamlines of BESSY II in a high-throughput procedure and identify substances from them that could dock to the main protease of SARS-CoV-2 or other target proteins. These drug-like candidates originate from a unique library generated and collected by Dr. Vladimír Kryštof, Palacký University Olomouc. All compounds are either already approved for the treatment of other diseases or are in various clinical phases. If hits were to come out of this, it would be possible to develop drugs against COVID-19 remarkably quickly. Prof. Dr. Klaus Scheffzek and his team at the Medical University in Innsbruck can investigate the hit compounds in detail using biophysical methods and initiate the first virological studies. Prof. Dr. Christian Drosten, Director of the Institute of Virology at Charité Berlin, and other experts are also on board as advisors and partners.

"In the NECESSITY project, we bring together expertise from different fields," says Feiler. "Together, we have planned a very efficient interdisciplinary workflow to identify antiviral substances that can be used as effective drugs against COVID-19 and beyond as quickly as possible."  

The project is funded by the German Research Foundation and the corresponding funding organizations in Austria and the Czech Republic for 36 months with almost 800,000 Euros.

 

 

 

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.