Review: X-ray scattering methods with synchrotron radiation

</p> <p>Resonant X-ray excitation (purple) core excites the oxygen atom within a H<sub>2</sub>O molecule. This causes ultrafast proton dynamics. The electronic ground state potential surface (bottom) and the bond dynamics is captured by distinct spectral features in resonant inelastic X-ray scattering (right).</p> <p></p> <p>

Resonant X-ray excitation (purple) core excites the oxygen atom within a H2O molecule. This causes ultrafast proton dynamics. The electronic ground state potential surface (bottom) and the bond dynamics is captured by distinct spectral features in resonant inelastic X-ray scattering (right).

© Martin Künsting /HZB

Synchrotron light sources provide brilliant light with a focus on the X-ray region and have enormously expanded the possibilities for characterising materials. In the Reviews of Modern Physics, an international team now gives an overview of elastic and inelastic X-ray scattering processes, explains the theoretical background and sheds light on what insights these methods provide in physics, chemistry as well as bio- and energy related themes.

"X-ray scattering can be used to investigate and resolve a wide variety of issues from the properties and excitations of fuctional solids, to homogeneous and heterogeneous chemical processes and reactions or even the proton pathway during the splitting of water," explains Prof. Dr. Alexander Föhlisch, who heads the Institute Methods and Instrumentation for Research with Synchrotron Radiation at HZB.

The article gives an overview of experimental and theoretical results in the field of resonant scattering of tunable soft and hard X-rays. The focus is on resonant inelastic X-ray scattering (RIXS) and resonant Auger scattering (RAS). In the review, the authors outline the most important achievements from the last two decades at Synchrotrons up to the latest advances in time-resolved studies with X-ray free-electron lasers.

arö

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.