Perovskite solar cells: Interfacial loss mechanisms revealed

The SAM layer between the perovskite semiconductor and the ITO contact consists of a single layer of organic molecules. The mechanisms by which this SAM layer reduces losses can be quantified by measuring the surface photovoltage and photoluminescence.

The SAM layer between the perovskite semiconductor and the ITO contact consists of a single layer of organic molecules. The mechanisms by which this SAM layer reduces losses can be quantified by measuring the surface photovoltage and photoluminescence. © HZB

Metal-organic perovskite materials promise low-cost and high-performance solar cells. Now a group at HZB managed to de-couple the different effects of self-assembled monolayers of organic molecules (SAMs) that reduce losses at the interfaces. Their results help to optimise such functional interlayers.

Losses occur in all solar cells. One cause is the recombination of charge carriers at the interfaces. Intermediate layers at such interfaces can reduce these losses through so-called passivation.  Self-assembled monolayers (SAMs) with a carbazole core are particularly well suited for the passivation of semiconductor surfaces made of perovskite materials. A team led by HZB physicist Prof. Steve Albrecht together with a group from Kaunas Technical University in Lithuania demonstrated this some time ago, developing a silicon-perovskite-based tandem solar cell with a record efficiency of over 29 %.

Now, for the first time, a team at HZB has analysed the charge carrier dynamics at the perovskite/SAM-modified ITO interface in more detail. From time-resolved surface photovoltage measurements, they were able to extract the density of "electron traps" at the interface as well as the hole transfer rates using a minimalist kinetic model. Complementary information was provided by measuring the time-resolved photoluminescence.

"We were able to determine differences in passivation quality, selectivity and hole transfer rates depending on the structure of the SAM, and demonstrate how the time-resolved surface photovoltage and photoluminescence techniques are complementary," explains Dr. Igal Levine, postdoc at HZB and first author of the paper. Time-resolved surface photovoltage proves to be a relatively simple technique for quantifying charge extraction at buried interfaces that could significantly facilitate the design of ideal charge-selective contacts.

arö


You might also be interested in

  • Vortrag "BIPV - zwischen Bauwelt und Photovoltaik"
    Nachricht
    15.04.2024
    Vortrag "BIPV - zwischen Bauwelt und Photovoltaik"
    Im Rahmen der The smarter-e Europe/Intersolar Europe 2024 findet eine Vortragssession organisiert von der Allianz BIPV und dem Solarenergieförderverein Bayern e.V. zum Thema "Bauwerkintegrierte Photovoltaik (BIPV)" statt.

    Datum: 19. Juni 2024, 16:00 -17:45 Uhr
    Ort:       Messe München, Halle A3, Stand A3.150

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    03.04.2024
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells.