Perovskite solar cells: Interfacial loss mechanisms revealed

The SAM layer between the perovskite semiconductor and the ITO contact consists of a single layer of organic molecules. The mechanisms by which this SAM layer reduces losses can be quantified by measuring the surface photovoltage and photoluminescence.

The SAM layer between the perovskite semiconductor and the ITO contact consists of a single layer of organic molecules. The mechanisms by which this SAM layer reduces losses can be quantified by measuring the surface photovoltage and photoluminescence. © HZB

Metal-organic perovskite materials promise low-cost and high-performance solar cells. Now a group at HZB managed to de-couple the different effects of self-assembled monolayers of organic molecules (SAMs) that reduce losses at the interfaces. Their results help to optimise such functional interlayers.

Losses occur in all solar cells. One cause is the recombination of charge carriers at the interfaces. Intermediate layers at such interfaces can reduce these losses through so-called passivation.  Self-assembled monolayers (SAMs) with a carbazole core are particularly well suited for the passivation of semiconductor surfaces made of perovskite materials. A team led by HZB physicist Prof. Steve Albrecht together with a group from Kaunas Technical University in Lithuania demonstrated this some time ago, developing a silicon-perovskite-based tandem solar cell with a record efficiency of over 29 %.

Now, for the first time, a team at HZB has analysed the charge carrier dynamics at the perovskite/SAM-modified ITO interface in more detail. From time-resolved surface photovoltage measurements, they were able to extract the density of "electron traps" at the interface as well as the hole transfer rates using a minimalist kinetic model. Complementary information was provided by measuring the time-resolved photoluminescence.

"We were able to determine differences in passivation quality, selectivity and hole transfer rates depending on the structure of the SAM, and demonstrate how the time-resolved surface photovoltage and photoluminescence techniques are complementary," explains Dr. Igal Levine, postdoc at HZB and first author of the paper. Time-resolved surface photovoltage proves to be a relatively simple technique for quantifying charge extraction at buried interfaces that could significantly facilitate the design of ideal charge-selective contacts.

arö

You might also be interested in

  • European pilot line for innovative photovoltaic technology based on tandem solar cells
    News
    23.11.2022
    European pilot line for innovative photovoltaic technology based on tandem solar cells
    PEPPERONI, a four-year Research and Innovation project co-funded under Horizon Europe and jointly coordinated by Helmholtz-Zentrum Berlin and Qcells, will support Europe in reaching its renewable energy target of climate neutrality by 2050. The project will help advance perovskite/silicon tandem photovoltaics (PV) technology’s journey towards market introduction and mass manufacturing.
  • How photoelectrodes change in contact with water
    Science Highlight
    17.11.2022
    How photoelectrodes change in contact with water
    Photoelectrodes based on BiVO4 are considered top candidates for solar hydrogen production. But what exactly happens when they come into contact with water molecules? A study in the Journal of the American Chemical Society has now partially answered this crucial question:  Excess electrons from dopants or defects aid the dissociation of water which in turn stabilizes so-called polarons at the surface. This is shown by data from experiments conducted at the Advanced Light Source at Lawrence Berkeley National Laboratory. These insights might foster a knowledge-based design of better photoanodes for green hydrogen production.
  • Photocatalysis: Processes in charge separation recorded experimentally
    Science Highlight
    08.11.2022
    Photocatalysis: Processes in charge separation recorded experimentally
    Certain metal oxides are considered good candidates for photocatalysts to produce green hydrogen with sunlight. A Chinese team has now published exciting results on copper(I) oxide particles in Nature, to which a method developed at HZB contributed significantly. Transient surface photovoltage spectroscopy showed that positive charge carriers on surfaces are trapped by defects in the course of microseconds. The results provide clues to increase the efficiency of photocatalysts.