Perowskit-Solarzellen: Was geschieht an SAM-Passivierungsschichten?

Die SAM-Schicht zwischen dem Perowskit-Halbleiter und dem ITO-Kontakt besteht aus einer einzigen Lage aus organischen Molekülen. Messungen von Oberflächenphotospannung und Photolumineszenz zeigen, über welche Mechanismen die SAM-Schicht Verluste reduziert.

Die SAM-Schicht zwischen dem Perowskit-Halbleiter und dem ITO-Kontakt besteht aus einer einzigen Lage aus organischen Molekülen. Messungen von Oberflächenphotospannung und Photolumineszenz zeigen, über welche Mechanismen die SAM-Schicht Verluste reduziert. © HZB

Metall-organische Perowskit-Materialien versprechen kostengünstige und leistungsstarke Solarzellen. Einer Gruppe am HZB ist es nun gelungen, verschiedene Effekte genauer zu unterscheiden, die an einer SAM-Passivierungsschicht auftreten und die Verluste an den Grenzflächen verringern. Ihre Ergebnisse tragen dazu bei, solche funktionalen Zwischenschichten zu optimieren.

Verluste treten in allen Solarzellen auf. Eine Ursache ist die Rekombination von Ladungsträgern an den Grenzflächen. Zwischenschichten an solchen Grenzflächen können diese Verluste durch sogenannte Passivierung verringern. Besonders gut für die Passivierung von Perowskit-Halbleiteroberflächen eignen sich selbstorganisierte Monolagen (SAMs) aus organischen Molekülen mit einem Carbazol-Kern. Das hat ein Team um den HZB-Physiker Prof. Steve Albrecht mit einer Gruppe der Technischen Universität Kaunas in Litauen bereits vor einiger Zeit gezeigt und damit eine Silizium-Perowskit-Tandemsolarzelle mit einem Rekordwirkungsgrad von über 29 Prozent entwickelt.

Nun hat eine Gruppe am HZB erstmals die Ladungsträgerdynamik an der Perowskit/SAM-modifizierten ITO-Grenzfläche genauer analysiert. Aus zeitaufgelösten Messungen der Oberflächenphotospannung konnten sie mit Hilfe eines kinetischen Modells die Dichte von "Elektronenfallen" an der Grenzfläche sowie die Lochtransferraten extrahieren. Ergänzende Informationen lieferte die Messung der zeitaufgelösten Photolumineszenz.

„Wir konnten Unterschiede in der Passivierungsqualität, der Selektivität und den Lochtransferraten in Abhängigkeit von der Struktur des SAMs feststellen“, erklärt Dr. Igal Levine, Postdoc am HZB und Erstautor der Arbeit. „Wir haben gezeigt, dass wir damit eine relativ einfache Technik zur Verfügung haben, um die Ladungsextraktion an vergrabenen Grenzflächen zu quantifizieren.“ Das könnte das Design idealer ladungsselektiver Kontakte künftig erheblich erleichtern.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Nachricht
    04.02.2025
    HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Durch die Kombination von zwei Halbleiterdünnschichten zu einer Tandemsolarzelle sind hohe Wirkungsgrade bei minimalem ökologischem Fußabdruck erreichbar. Teams aus dem HZB und der Humboldt-Universität zu Berlin haben nun eine Tandemzelle aus CIGS und Perowskit vorgestellt, die mit einem Wirkungsgrad von 24,6 % den neuen Weltrekord hält. Dieser Wert wurde durch das Fraunhofer-Institut für Solare Energiesysteme ISE zertifiziert.
  • Vortragsreihe zu BIPV auf der Inolope Expo 2025
    Nachricht
    04.02.2025
    Vortragsreihe zu BIPV auf der Inolope Expo 2025
    Das Helmholtz-Zentrum Berlin und BAIP - Beratungsstelle für Bauwerkintegrierte Photovoltaik sind Partner der Inolope Expo 2025 – der Business-Plattform für innovative Gebäudehüllen.

    An unserem Stand 7.F02 laden wir zu Gesprächen  und Informationen zu BIPV ein. An zwei Tagen präsentieren wir praxisorientierte Vorträge zum Thema bauwerkintegrierte Photovoltaik und Insights zu unserem Real-labor Testinghalle. Hier erfahren Sie, wie Sie mit solarer Architektur auf innovative, ästhetische und nachhaltige Weise gestalten.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    31.01.2025
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    In der Titelgeschichte stellen wir Astrid Brandt vor. Sie leitet die Nutzerkoordination am Helmholtz-Zentrum Berlin. Mit ihrem Team behält sie stets den Überblick über Anträge, Messzeiten und Publikationen der bis zu 1.000 Gastforschenden, die jedes Jahr zu BESSY II kommen. Naturwissenschaften faszinierten sie schon immer.

    Doch auch ihre zweite Leidenschaft, die Musik, hat sie bis heute nicht losgelassen.