Unordnung bringt quantenphysikalische Talente zum Vorschein

Der Dirac-Kegel ist typisch für Topologische Isolatoren und auf allen 6 Bildern praktisch unverändert (ARPES-Messungen an BESSY II). Der blaue Pfeil zeigt zusätzlich die Valenzelektronen im Volumen. Das Synchrotronlicht tastet beide ab und kann so den Dirac Kegel an der Oberfläche (elektrisch leitend) vom dreidimensionalen Volumen (isolierend) unterscheiden.

Der Dirac-Kegel ist typisch für Topologische Isolatoren und auf allen 6 Bildern praktisch unverändert (ARPES-Messungen an BESSY II). Der blaue Pfeil zeigt zusätzlich die Valenzelektronen im Volumen. Das Synchrotronlicht tastet beide ab und kann so den Dirac Kegel an der Oberfläche (elektrisch leitend) vom dreidimensionalen Volumen (isolierend) unterscheiden. © HZB

Quanteneffekte machen sich vor allem bei extrem tiefen Temperaturen bemerkbar, was ihren Nutzen für technische Anwendungen einschränkt. Dünnschichten aus MnSb2Te4 zeigen jedoch neue Talente, weil sie zu einem kleinen Überschuss an Mangan neigen. Offenbar sorgt die entstehende Unordnung für spektakuläre Eigenschaften: Das Material erweist sich als Topologischer Isolator und ist ferromagnetisch bis zu vergleichsweise hohen Temperaturen von 50 Kelvin, zeigen Messungen an BESSY II.  Damit kommt diese Materialklasse für Quantenbits in Frage, aber auch generell für die Spintronik oder Anwendungen in der Hochpräzisions-Metrologie.

Quanteneffekte wie der anomale Quanten-Hall-Effekt ermöglichen Sensoren mit höchster Empfindlichkeit, sind die Grundlage für spintronische Bauelemente in künftigen Informationstechnologien und auch für Qubits in Quantencomputern der Zukunft. Doch in der Regel zeigen sich die dafür relevanten Quanteneffekte nur bei sehr tiefen Temperaturen nahe dem absoluten Nullpunkt und in besonderen Materialsystemen deutlich genug, um nutzbar zu sein.

Ferromagnetischer Topologischer Isolator

Nun hat ein internationales Team um den HZB-Physiker Prof. Dr. Oliver Rader und Prof. Dr. Gunther Springholz, Universität Linz, in Dünnschichten von MnSb2Te4 zwei besonders wichtige physikalische Eigenschaften beobachtet: Solche Strukturen sind robuste Topologische Isolatoren und außerdem ferromagnetisch bis zu knapp 50 Kelvin.  „Den bislang publizierten theoretischen Betrachtungen zufolge, sollte das Material weder ferromagnetisch noch topologisch sein“, sagt Rader. „Wir haben genau diese beiden Eigenschaften nun aber experimentell nachgewiesen.“

Unordnung macht den Unterschied

Die Gruppe kombinierte Messungen von spin- und winkelaufgelöster Photoemissionsspektroskopie (ARPES) und magnetischen Röntgenzirkulardichroismus (XMCD) an BESSY II, untersuchte die Oberflächen mit Rastertunnelmikroskopie (STM) und -spektroskopie (STS), und führte weitere Untersuchungen durch. „Dadurch ist nun auch klar, warum in diesem Fall die theoretische Betrachtung zu einem anderen Resultat gekommen ist – die Theorie ging von einer ideal geordneten Struktur aus, aber wir sehen, dass die zusätzlichen Mangan-Atome zu einer gewissen Unordnung geführt haben. Das erklärt den Unterschied“, so Rader.

Robust bis zu 50 Kelvin

Die Eigenschaften sind außerordentlich robust und treten bis zu einer Temperatur von knapp 50 K auf, das liegt dreimal höher als bei den besten ferromagnetischen Systemen zuvor (siehe Nature, 2019). Damit ist dieses Material ein interessanter Kandidat für die Spintronik und sogar für Qubits.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.
  • KI analysiert Dinosaurier-Fußabdrücke neu
    Science Highlight
    27.01.2026
    KI analysiert Dinosaurier-Fußabdrücke neu
    Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.