Strahldiagnostik für zukünftige Beschleuniger im Tischformat

Aus den Interferenzmustern bei unterschiedlichen Brennweiten und Photonenintensitäten lassen sich Aussagen über die Qualität des Strahls gewinnen.

Aus den Interferenzmustern bei unterschiedlichen Brennweiten und Photonenintensitäten lassen sich Aussagen über die Qualität des Strahls gewinnen. © www.nature.com/articles/s42005-021-00717-x

Die Simulation zeigt das Prinzip eines Laser-Wakefield-Beschleunigers: Der Laserpuls (nicht abgebildet) bewegt sich nach rechts und verdrängt alle Plasmaelektronen aus seiner Bahn. Dabei erzeugt er Blasen aus positiv geladenen Ionen, deren starke elektrische Felder Elektronen anziehen und beschleunigen, während sie mit dem Laserpuls mitfliegen.

Die Simulation zeigt das Prinzip eines Laser-Wakefield-Beschleunigers: Der Laserpuls (nicht abgebildet) bewegt sich nach rechts und verdrängt alle Plasmaelektronen aus seiner Bahn. Dabei erzeugt er Blasen aus positiv geladenen Ionen, deren starke elektrische Felder Elektronen anziehen und beschleunigen, während sie mit dem Laserpuls mitfliegen. © Joshua Ludwig, cc 4.0 wikimedia.org/wiki/File:Frame_000000100_extra_terrible_resolution.png

Seit Jahrzehnten wurden Teilchenbeschleuniger immer größer. Inzwischen haben Ringbeschleuniger mit Umfängen von vielen Kilometern eine praktische Grenze erreicht. Auch Linearbeschleuniger im GHz-Bereich erfordern sehr große Baulängen. Seit einigen Jahren gibt es jedoch eine Alternative: „Teilchenbeschleuniger im Tischformat“, die auf der Laseranregung von Kielwellen in Plasmen (laser wakefield) basieren. Solche kompakten Teilchenbeschleuniger wären insbesondere für künftige beschleunigergetriebene Lichtquellen interessant, werden aber auch für die Hochenergiephysik untersucht. Ein Team aus dem Helmholtz-Zentrum Berlin (HZB) und der Physikalisch-Technischen Bundesanstalt (PTB) hat eine Methode entwickelt, um den Querschnitt der so beschleunigten Elektronenpakete präzise zu vermessen.  Dadurch rücken Anwendungen dieser neuen Beschleunigertechnologien für Medizin und Forschung näher.

Das Prinzip der Laser-Wakefield-Beschleuniger: Ein Hochleistungslaser regt in einem Plasma eine Ladungswelle an, die sich mit der Geschwindigkeit des Laserpulses fortpflanzt und ihrem „Kielwasser“ Elektronen hinterherzieht und so beschleunigt. Elektronenenergien im GeV-Bereich können mit dieser Technik schon seit längerem erreicht werden. Allerdings sind die so erzeugten Elektronenpakete bisher zu klein und zu schlecht fokussiert, um die von ihnen abgegebene Synchrotronstrahlung zu nutzen, ein intensives, kohärentes Licht, das für die Forschung in vielen unterschiedlichen Disziplinen eingesetzt wird.

Anmerkung:

Die hier geschilderte Arbeit findet im Rahmen des Projekts ATHENA – „Accelerator Technology Helmholtz Infrastructure“ statt.  Das ist eine neue Forschungs- und Entwicklungsplattform der Helmholtz-Gemeinschaft für Beschleunigertechnologien. Auf Grundlage innovativer plasmabasierter Teilchenbeschleuniger und hochmoderner Lasertechnologie sollen zwei Leuchtturmprojekte aufgebaut werden: bei DESY in Hamburg eine Elektronen- und in Dresden eine Hadronenbeschleunigeranlage. An beiden Anlagen sollen verschiedener Einsatzgebiete entwickelt werden, die von einem kompakten Freie-Elektronen-Laser über neuartige medizinische Anwendungen bis hin zu neuen Einsatzmöglichkeiten in Kern- und Teilchenphysik reichen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.