Surface analysis at BESSY II: sharper insights into thin-film systems

</p> <p class="MsoCommentText">The illustration shows how the APECS measurement works on a nickel single crystal with an oxidised surface. An X-ray beam ionises atoms, either in the nickel crystal or on the surface. The excited photoelectrons from the surface and from the crystal have slightly different binding energies. The Auger electrons make it possible to determine the origin of the photoelectrons.&nbsp;</p> <p>

The illustration shows how the APECS measurement works on a nickel single crystal with an oxidised surface. An X-ray beam ionises atoms, either in the nickel crystal or on the surface. The excited photoelectrons from the surface and from the crystal have slightly different binding energies. The Auger electrons make it possible to determine the origin of the photoelectrons. 

© Martin Künsting /HZB

Interfaces in semiconductor components or solar cells play a crucial role for functionality. Nevertheless, until now it has often been difficult to investigate adjacent thin films separately using spectroscopic methods. An HZB team at BESSY II has combined two different spectroscopic methods and used a model system to demonstrate how well they can be distinguished.

Photoelectron spectroscopy (PES) enables the chemical analysis of surfaces and semiconductor layers. In this process, an X-ray pulse (photons) hits the sample and excites electrons to leave the sample. With special detectors, it is then possible to measure the direction and binding energy of these electrons and thus obtain information about electronic structures and the chemical environment of the atoms in the material. However, if the binding energies are close to each other in adjacent layers, then it is hardly possible to distinguish these layers from each other with PES.

 A team at HZB has now shown how precise assignments can nevertheless be achieved: they combined photoelectron spectroscopy with a second spectroscopic method: Auger electron spectroscopy. Here, photoelectrons and Auger electrons are measured simultaneously, which gives the resulting method its name: APECS for Auger electron photoelectron coincidence spectroscopy (APECS). 

A comparison of the binding energies determined in this way then allows conclusions to be drawn about the respective chemical environment and thus enables the finest layers to be distinguished. Using a single-crystal nickel sample, a very good model system for many metals, the team has now been able to show how well this works: The experimental data enabled the physicists to precisely determine the shift in the binding energy of the electrons, depending on whether they came from the thin oxidised surface or from the deeper crystal layers.

"At first, we were sceptical whether it would be possible to really extract a clear distinction from the data. We were excited to see such a distinct effect," says Artur Born, first author of the paper, who is doing his doctorate in Prof. Alexander Föhlisch's team.

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • MXene as a frame for 2D water films shows new properties
    Science Highlight
    13.08.2025
    MXene as a frame for 2D water films shows new properties
    An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.
  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.