"Green" chemistry: BESSY II sheds light on mechanochemical synthesis

Finely ground powders can also react with each other without solvents to form the desired product. This is the approach of mechanochemistry.

Finely ground powders can also react with each other without solvents to form the desired product. This is the approach of mechanochemistry. © F. Emmerling/BAM

The reagents are ground in a ball mill, and the formation of new products and phases can be followed via X-ray structure analysis at BESSY II. Picture: F. Emmerling/BAM

The reagents are ground in a ball mill, and the formation of new products and phases can be followed via X-ray structure analysis at BESSY II. Picture: F. Emmerling/BAM © F. Emmerling/BAM

In mechanochemistry, reagents are finely ground and mixed so that they combine to form the desired product, even without need for solvent. By eliminating solvent, this technology promises to contribute significantly towards ‘green’ and environmentally benign chemical manufacture in the future. However, there are still major gaps in understanding the key processes that occur during mechanical treatment and reaction. A team led by the Federal Institute for Materials Research (BAM) has now developed a method at BESSY II to observe these processes in situ with X-ray scattering. 

Chemical reactions are often based on the use of solvents that pollute the environment. Yet, many reactions can also work without solvent. This is the approach known as mechanochemistry, in which reagents are very finely ground and mixed together so that they react with each other to form the desired product.  The mechanochemical approach is not only more environmentally friendly, but even potentially cheaper than classical synthesis methods. The International Union of Pure and Applied Chemistry (IUPAC) therefore ranks mechanochemistry among the 10 chemical innovations that will change our world. However, the full potential of this technology cannot be realized until the processes during mechanical treatment are understood in more detail, so that it is possible to precisely direct and control them.

Understanding what exactly happens during mechanical treatment and how the reactions take place is difficult to study. Traditionally, this is done by stopping the reaction and removing the material from the reactor for analysis "ex situ." However, many systems continue their transformation even after the milling process is stopped. Such reactions can only be studied by directly examining the reaction in situ during mechanical treatment.

Time-resolved in situ monitoring

Now, an international team including Dr. Adam Michalchuk and Dr. Franziska Emmerling from the Federal Institute for Materials Research (BAM) and researchers at the University of Cambridge and University of Parma used BESSY II's μSpot beamline to develope a method to gain insight in situ and during mechanical treatment.

To do so, the team used a combination of miniaturized grinding jars together with innovations in X-ray powder diffraction and state-of-the-art analysis strategies to significantly increase the quality of data from time-resolved in situ monitoring (TRIS).

Very small samples

"Even with exceptionally small sample volumes, we get an accurate composition and structure of each phase over the course of the reaction," says Michalchuk. Even with sample amounts as small as a few milligrams, good results were possible. In addition, they can determine the crystal size and other important parameters. This strategy is applicable to all chemical species, is easy to implement, and provides high-quality diffraction data even with a low-energy synchrotron source.

"This provides a direct route to the mechanochemical study of reactions involving scarce, expensive or toxic compounds," Emmerling says.

arö

  • Copy link

You might also be interested in

  • AI in Chemistry: Study Highlights Strengths and Weaknesses
    News
    04.06.2025
    AI in Chemistry: Study Highlights Strengths and Weaknesses
    How well does artificial intelligence perform compared to human experts? A research team at HIPOLE Jena set out to answer this question in the field of chemistry. Using a newly developed evaluation method called “ChemBench,” the researchers compared the performance of modern language models such as GPT-4 with that of experienced chemists. 

  • TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    News
    30.05.2025
    TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    On 21 May 2025, the Technical University of Applied Sciences Wildau (TH Wildau) and the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), signed a comprehensive cooperation agreement. The aim is to further promote networking and cooperation, particularly in basic research, to increase the scientific excellence of both partners and to develop competence networks in research, teaching and the training of young scientists.

  • Green hydrogen: MXene boosts the effectiveness of catalysts
    Science Highlight
    29.05.2025
    Green hydrogen: MXene boosts the effectiveness of catalysts
    MXenes are adept at hosting catalytically active particles. This property can be exploited to create more potent catalyst materials that significantly accelerate and enhance the oxygen evolution reaction, which is one of the bottlenecks in the production of green hydrogen via electrolysis using solar or wind power. A detailed study by an international team led by HZB chemist Michelle Browne shows the potential of these new materials for future large-scale applications. The study is published in Advanced Functional Materials.