Walter-Schottky-Award for Felix Büttner

Dr. Felix Büttner is leading a Helmholtz Young Investigator group at HZB on topological solitons.

Dr. Felix Büttner is leading a Helmholtz Young Investigator group at HZB on topological solitons. © privat

The Walter Schottky Prize honours outstanding work by young physicists in solid-state research. For 2022, the award goes to HZB physicist Dr Felix Büttner for his groundbreaking achievements in the field of magnetic skyrmions.

"His work has contributed significantly to the understanding of the ultrafast generation and properties of these topological states."

This praise on Büttner's work is published on the website of the German Physical Society (DPG), which awards the Walter Schottky Prize.

The DPG further explains: Magnetic skyrmions are spin textures that behave like quasiparticles and have a non-trivial topology. Felix Büttner has made a decisive contribution to the fundamental understanding of the dynamics of skyrmions, taking their topology into account. He has used time-resolved X-ray holography and scattering experiments on X-ray lasers to elucidate the mechanisms of the generation of skyrmions by short laser pulses and to improve the possibilities for the fast and efficient movement of skyrmions by current pulses in ladder structures.

Felix Büttner studied in Göttingen and received his PhD in 2013 for his work at the interface of magnetism (Mathias Kläui, JGU Mainz) and X-ray physics (Stefan Eisebitt, TU Berlin). After a stint in industry at Daimler AG, he worked as a postdoctoral researcher at the Massachusetts Institute of Technology with G.S.D. Beach in 2015-2020. Since 2020, he has been leading an independent research group at the Helmholtz Zentrum Berlin für Materialien und Energie.

The award is expected to be presented in March 2022 during the DPG Spring Meeting in Regensburg.

DPG/red.

  • Copy link

You might also be interested in

  • Perovskites: Hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Perovskites: Hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.