Liquid crystals for fast switching devices

The photo shows the cells on the modified sample holder which was used in the real experiment. This modified sample holder is mounted within the ALICE chamber at BESSY II.

The photo shows the cells on the modified sample holder which was used in the real experiment. This modified sample holder is mounted within the ALICE chamber at BESSY II. © A. Smekhova/HZB

</p> <p>Schematic representation of the EZL10/10 molecule: a 3D model and the structural formula.</p> <p>

Schematic representation of the EZL10/10 molecule: a 3D model and the structural formula.

© Soft Matter, 2021, DOI: 10.1039/D1SM01543E

An international team has investigated a newly synthesized liquid-crystalline material that promises applications in optoelectronics. Simple rod-shaped molecules with a single center of chirality self-assemble into helical structures at room temperature. Using soft X-ray resonant scattering at BESSY II, the scientists have now been able to determine the pitch of the helical structure with high precision. Their results indicate an extremely short pitch at only about 100 nanometres which would enable applications with particularly fast switching processes.

Liquid crystals are not solid, but some of their physical properties are directional - like in a crystal. This is because their molecules can arrange themselves into certain patterns. The best-known applications include flat screens and digital displays. They are based on pixels of liquid crystals whose optical properties can be switched by electric fields.

Some liquid crystals form the so-called cholesteric phases: the molecules self-assemble into helical structures, which are characterised by pitch and rotate either to the right or to the left. "The pitch of the cholesteric spirals determines how quickly they react to an applied electric field," explains Dr. Alevtina Smekhova, physicist at HZB and first author of the study, which has now been published in Soft Matter.

Simple molecular chain

In this work, she and partners from the Academies of Sciences in Prague, Moscow and Chernogolovka investigated a liquid crystalline cholesteric compound called EZL10/10, developed in Prague. "Such cholesteric phases are usually formed by molecules with several chiral centres, but here the molecule has only one chiral centre," explains Dr. Smekhova. It is a simple molecular chain with one lactate unit.

Ultrashort pitch

At BESSY II, the team has now examined this compound with soft X-ray light and determined the pitch and space ordering of the spirals. This was the shortest up-to-date reported value of the pitch: only 104 nanometres! This is twice as short as the previously known pitch of spiral structures in liquid crystals. Further analysis showed that in this material the cholesteric spirals form domains with characteristic lengths of about five pitches.

Outlook

"This very short pitch makes the material unique and promising for optoelectronic devices with very fast switching times," Dr. Smekhova points out. In addition, the EZ110/10 compound is thermally and chemically stable and can easily be further varied to obtain structures with customised pitch lengths.

Note:

Dr. Alevtina Smekhova is working at HZB with an emphasis on metrological measurements, data standardization and to the goal, among others, to bring new users to BESSY II for the synchrotron-based research on advanced materials (Energy Materials, Quantum Materials, Information and Communication Technology Materials).

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 25 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.