Liquid crystals for fast switching devices

The photo shows the cells on the modified sample holder which was used in the real experiment. This modified sample holder is mounted within the ALICE chamber at BESSY II.

The photo shows the cells on the modified sample holder which was used in the real experiment. This modified sample holder is mounted within the ALICE chamber at BESSY II. © A. Smekhova/HZB

</p> <p>Schematic representation of the EZL10/10 molecule: a 3D model and the structural formula.</p> <p>

Schematic representation of the EZL10/10 molecule: a 3D model and the structural formula.

© Soft Matter, 2021, DOI: 10.1039/D1SM01543E

An international team has investigated a newly synthesized liquid-crystalline material that promises applications in optoelectronics. Simple rod-shaped molecules with a single center of chirality self-assemble into helical structures at room temperature. Using soft X-ray resonant scattering at BESSY II, the scientists have now been able to determine the pitch of the helical structure with high precision. Their results indicate an extremely short pitch at only about 100 nanometres which would enable applications with particularly fast switching processes.

Liquid crystals are not solid, but some of their physical properties are directional - like in a crystal. This is because their molecules can arrange themselves into certain patterns. The best-known applications include flat screens and digital displays. They are based on pixels of liquid crystals whose optical properties can be switched by electric fields.

Some liquid crystals form the so-called cholesteric phases: the molecules self-assemble into helical structures, which are characterised by pitch and rotate either to the right or to the left. "The pitch of the cholesteric spirals determines how quickly they react to an applied electric field," explains Dr. Alevtina Smekhova, physicist at HZB and first author of the study, which has now been published in Soft Matter.

Simple molecular chain

In this work, she and partners from the Academies of Sciences in Prague, Moscow and Chernogolovka investigated a liquid crystalline cholesteric compound called EZL10/10, developed in Prague. "Such cholesteric phases are usually formed by molecules with several chiral centres, but here the molecule has only one chiral centre," explains Dr. Smekhova. It is a simple molecular chain with one lactate unit.

Ultrashort pitch

At BESSY II, the team has now examined this compound with soft X-ray light and determined the pitch and space ordering of the spirals. This was the shortest up-to-date reported value of the pitch: only 104 nanometres! This is twice as short as the previously known pitch of spiral structures in liquid crystals. Further analysis showed that in this material the cholesteric spirals form domains with characteristic lengths of about five pitches.

Outlook

"This very short pitch makes the material unique and promising for optoelectronic devices with very fast switching times," Dr. Smekhova points out. In addition, the EZ110/10 compound is thermally and chemically stable and can easily be further varied to obtain structures with customised pitch lengths.

Note:

Dr. Alevtina Smekhova is working at HZB with an emphasis on metrological measurements, data standardization and to the goal, among others, to bring new users to BESSY II for the synchrotron-based research on advanced materials (Energy Materials, Quantum Materials, Information and Communication Technology Materials).

arö

  • Copy link

You might also be interested in

  • Hydrogen storage in MXene: It all depends on diffusion processes
    Science Highlight
    23.06.2025
    Hydrogen storage in MXene: It all depends on diffusion processes
    Two-dimensional (2D) materials such as MXene are of great interest for hydrogen storage. An expert from HZB has investigated the diffusion of hydrogen in MXene using density functional theory. This modelling provides valuable insights into the key diffusion mechanisms and hydrogen's interaction with Ti₃C₂ MXene, offering a solid foundation for further experimental research.
  • Research up close! The Long Night of Science at HZB
    News
    20.06.2025
    Research up close! The Long Night of Science at HZB
    On 28 June, it's that time again: the Long Night of Science will take place from 5 pm to midnight  in Berlin and also in Adlershof! Come around and take a look behind the scenes of our exciting research.
  • HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    News
    19.06.2025
    HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) and the National University of "Kyiv-Mohyla Academy" (NaUKMA) have signed a Memorandum of Understanding (MoU). The MoU serves as the starting point for collaborative research, academic exchange, and capacity-building between the two institutions. Actions will be taken to establish the Joint Research and Policy Laboratory at NaUKMA in Kyiv. The aim of the future laboratory is to jointly develop research and policy analysis, focusing on the energy and climate dimensions of Ukraine’s EU integration.