Flüssigkristalle für schnelle Schaltprozesse

Das Bild zeigt den modifizierten Probenhalter mit Proben in der ALICE-Messkammer an BESSY II.

Das Bild zeigt den modifizierten Probenhalter mit Proben in der ALICE-Messkammer an BESSY II. © A. Smekhova/HZB

Schematische Darstellung des EZL10/10 Moleküls.

Schematische Darstellung des EZL10/10 Moleküls. © Soft Matter, 2021, DOI: 10.1039/D1SM01543E

Ein internationales Team hat eine neu synthetisierte  flüssigkristalline Verbindung untersucht, die Anwendungen in der Opto-Elektronik verspricht. Einfache stäbchenförmige Moleküle mit nur einem einzigen Chiralitätszentrum ordnen sich bei Raumtemperatur von selbst zu spiralförmigen Strukturen. Durch resonante Röntgenstreuung an BESSY II konnten die Forscher*innen nun die Ganghöhe der Helixstruktur bestimmen. Mit nur etwa 100 Nanometern ist diese extrem kurz, was besonders schnelle Schaltprozesse ermöglichen könnte.

Flüssigkristalle sind zwar nicht fest, sondern flüssig, aber einige ihrer physikalischen Eigenschaften sind dennoch richtungsabhängig  wie in einem Kristall. Das liegt daran, dass sich ihre Moleküle in bestimmten Mustern anordnen können. Zu den bekanntesten Anwendungen gehören Flachbildschirme und digitale Displays. Sie basieren auf Pixeln aus Flüssigkristallen, deren optische Eigenschaften durch elektrische Felder geschaltet werden können.

Schraubenförmige Strukturen

Einige Flüssigkristalle bilden so genannte cholesterische Phasen: Die Moleküle ordnen sich zu schraubenförmigen Strukturen an, die durch eine Steigung gekennzeichnet sind und sich entweder nach rechts oder nach links drehen. "Die Steigung der cholesterischen Spiralen bestimmt, wie schnell sie auf ein angelegtes elektrisches Feld reagieren", erklärt Dr. Alevtina Smekhova, Physikerin am HZB und Erstautorin der Studie, die jetzt in Soft Matter veröffentlicht wurde.

Stäbchenförmige Moleküle

Darin untersuchte sie mit Partnern der Akademien der Wissenschaften in Prag, Moskau und Chernogolovka eine in Prag entwickelte flüssigkristalline cholesterische Verbindung namens EZL10/10. "Solche cholesterischen Phasen werden normalerweise von Molekülen mit mehreren chiralen Zentren gebildet, aber hier hat das Molekül nur ein chirales Zentrum", erklärt Smekhova. Es handelt sich um eine einfache Molekülkette mit einer Laktateinheit.

Extrem kurze Ganghöhe

An BESSY II hat das Team diese Verbindung nun mit weichem Röntgenlicht untersucht und die Steigung und räumliche Anordnung der Spiralen bestimmt. Aus den Messdaten ermittelten sie eine Ganghöhe von 104 Nanometern! Das ist doppelt so kurz wie bei bisher bekannten cholesterischen Phasen in Flüssigkristallen. Weitere Analysen zeigten, dass die cholesterischen Spiralen in diesem Material Domänen mit charakteristischen Längen bilden.

Ausblick:

"Diese sehr kurze Ganghöhe macht das Material einzigartig und vielversprechend für optoelektronische Bauelemente mit sehr kurzen Schaltzeiten", betont Smekhova. Darüber hinaus ist die EZ110/10-Verbindung thermisch und chemisch stabil und kann leicht weiter variiert werden, um Strukturen mit maßgeschneiderten Ganghöhen zu erhalten.

Anmerkung: Dr. Alevtina Smekhova arbeitet am HZB mit einem Schwerpunkt auf metrologischen Messungen und Datenstandardisierung. Ziel ist es unter anderem, neue Nutzer für die synchrotronbasierte Forschung an Energiematerialien, Quantenmaterialien oder Materialien der Informations- und Kommunikationstechnologie an BESSY II zu gewinnen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.