Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation

Dr Fredrik Johansson (Institut des NanoSciences de Paris, CNRS, Sorbonne) receives the Ernst Eckhard Koch Prize for his outstanding dissertation.

Dr Fredrik Johansson (Institut des NanoSciences de Paris, CNRS, Sorbonne) receives the Ernst Eckhard Koch Prize for his outstanding dissertation. © F.J.

The prize for innovation in synchrotron research went to Professor Marianne Liebi and Dr Manuel Guizar-Sicairos, both from the Paul Scherrer Institute (PSI), Switzerland.

The prize for innovation in synchrotron research went to Professor Marianne Liebi and Dr Manuel Guizar-Sicairos, both from the Paul Scherrer Institute (PSI), Switzerland. © PSI

This year, the Friends of HZB awarded the Ernst Eckhard Koch Prize to the outstanding doctoral thesis of Dr Fredrik Johansson (Institut des NanoSciences de Paris, CNRS, Sorbonne). The European Innovation Award on Synchrotron Radiation went to Professor Marianne Liebi and Dr Manuel Guizar-Sicairos, both from the Paul Scherrer Institute (PSI, Switzerland). The award ceremony took place at this year's HZB user meeting, which had to be held digitally again this year and attracted nearly 400 participants.

The chairman of the Friends of HZB, Professor Mathias Richter, guided the award ceremony on screen. Six high caliber nominations were up for selection this year for the Ernst Eckhard Koch Prize.

Ernst Eckhard Koch Prize 2021

The Ernst Eckhard Koch Prize went to Dr Fredrik Johansson (now Institut des NanoSciences de Paris, CNRS, Sorbonne) for his dissertation at Uppsala University on "Core-hole Clock Spectroscopy Using Hard X-rays - Exciting States in Condensed Matter". 

"Overall an exceptional dissertation achievement" said the expert jury, highlighting the number of Johansson’s high-quality scientific publications. "Also impressive is the demonstration of orbital and directional selectivity in ultrafast charge transfer in SnS2 using core-hole-clock," the jury said. Johansson then presented the method in a clear and concise talk: it allows a precise measurement of charge transfer times in different solids and promises deeper insights into solar cells, for example.

Innovation Award on Synchrotron Radiation 2021

The Innovation Award on Synchrotron Radiation 2021 went to Professor Marianne Liebi and Dr Manuel Guizar-Sicairos, both from the Paul Scherrer Institute (PSI), Switzerland.  They developed and implemented a method to obtain information about textures in materials on the nanoscale from small angle scattering data using mathematical methods (Small Angle Scattering Tensor Tomography).  The expert jury emphasised that this method is now used at many synchrotron sources and has opened the door to fascinating studies of hierarchical structures in life and materials science. The laudation was given by Professor Gabriel Aeppli, Head of the Photon Science Division at PSI. The Innovation Award on Synchrotron Radiation is endowed with 3000 € and is sponsored by SPECS GmbH and BESTEC GmbH.

red.

  • Copy link

You might also be interested in

  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.