Standard-Silizium-Solarzellen erstmals mit Perowskit zu Tandem kombiniert

Auf einer Standard-Silizium-Zelle hat das HZB-Team eine Perowskit-Topzelle aufgebracht. Diese Tandem-Solarzelle könnte mit weiteren Optimierungen hohe Wirkungsgrade erreichen. 

Auf einer Standard-Silizium-Zelle hat das HZB-Team eine Perowskit-Topzelle aufgebracht. Diese Tandem-Solarzelle könnte mit weiteren Optimierungen hohe Wirkungsgrade erreichen.  © Silvia Mariotti / HZB

Das Schema illustriert einen Querschnitt durch eine Perowskit-POLO-PERC-Tandem-Solarzelle.

Das Schema illustriert einen Querschnitt durch eine Perowskit-POLO-PERC-Tandem-Solarzelle. © HZB

Im HySPRINT-Labor am HZB werden Perowskit-Materialien für Solarzellen stetig weiter optimiert.

Im HySPRINT-Labor am HZB werden Perowskit-Materialien für Solarzellen stetig weiter optimiert. © Michael Setzpfand/HZB

Die Massenfertigung von Silizium-Solarzellen nutzt so genannte PERC-Zellen, sie gelten als „Arbeitspferde“ der Photovoltaik. Nun haben zwei Teams vom HZB und dem Institut für Solarenergie-Forschung in Hameln (ISFH) gezeigt, dass solche Standard-Silizium-Zellen als Basis für Tandemzellen mit Perowskit-Topzellen geeignet sind. Aktuell liegt der Wirkungsgrad der Tandemzelle zwar noch unterhalb dem von optimierten PERC-Zellen allein, könnte aber durch gezielte Optimierungen rasch auf bis zu 29,5 % gesteigert werden. Die Forschung wurde im Rahmen eines Verbundprojekts durch das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) gefördert.

Tandemzellen aus Silizium und Perowskit sind in der Lage, das breite Energiespektrum des Sonnenlichts effizienter in elektrische Energie umzuwandeln als die jeweiligen Einzel-Zellen. Nun ist es zwei Teams vom HZB und dem ISFH Hameln erstmals gelungen, eine Perowskit-Topzelle mit einer so genannten PERC/POLO-Silizium-Zelle zu einem Tandem-Bauelement zu kombinieren. Das Besondere: PERC-Silizium-Zellen auf p-typ Silizium sind das „Arbeitspferd“ der Photovoltaik, mit einem Marktanteil von mehr als  50 %  aller weltweit produzierten Solarzellen. Sie sind weitgehend optimiert, temperatur- und langzeitstabil. Deshalb ist es für die Kommerzialisierung einer Perowskit-Silizium Tandem-Technologie besonders interessant, ein „Perowskit-Tandem-Upgrade“ für PERC-Zellen zu entwickeln. Die Kooperation fand im Rahmen des Verbundprojekts P3T statt, das vom Bundesministerium für Wirtschaft und Klimaschutz finanziert und vom HZB koordiniert wird.

Das Team am ISFH hat für den Rückseiten-Kontakt der Silizium-Bottomzellen einen industriekompatiblen PERC-Prozess genutzt. Auf der Vorderseite des Wafers kam mit dem sogenannten POLO Kontakt eine weitere industrialisierbare Technologie zum Einsatz, die hier für die kleinflächigen proof of concept-Zellen angepasst wurde.

Die weiteren Prozess-Schritte fanden am HZB statt: Eine zinndotierte Indiumoxid-Rekombinationsschicht wurde als Kontakt zwischen den beiden Teilzellen aufgebracht. Darauf wurde eine Perowskit-Zelle mit einer Schichtfolge prozessiert, die der in der aktuellen HZB-Weltrekord-Tandem-Zelle auf n-typ Silizium-Heterojunction-Zellen ähnelt. Die ersten so produzierten Perowskit-PERC/POLO Tandemzellen erreichen auf einer aktiven Zell-Fläche von ca. 1 cm² einen Wirkungsgrad von 21,3 %. Dieser Wirkungsgrad liegt in dieser Machbarkeitsstudie also noch unterhalb des Wirkungsgrads von optimierten PERC-Zellen. „Erste experimentelle Ergebnisse und optische Simulationen deuten aber darauf hin, dass wir die Leistung durch Prozess- und Schichtoptimierung erheblich verbessern können“, erklärt Dr. Lars Korte, der korrespondierende Autor der Studie.

Potenzieller Wirkungsgrad: 29,5 %

Die Expert*innen schätzen das Potenzial für den Wirkungsgrad (Fachbegriff PCE für Power Conversion Efficiency) dieser Perowskit/Silizium-Tandemsolarzellen mit PERC-ähnlicher Unterzellentechnologie auf 29,5 %. Erste Schritte zur weiteren Steigerung sind bereits im Blick: Dr. Silvia Mariotti aus dem HZB Team hatte die Bedeckung der Silizium-Oberfläche durch den Perowskiten als Verbesserungspotential identifiziert: „Man könnte dazu die Oberfläche der Silizium Wafer anpassen und so rasch die Effizienz auf ca. 25% steigern“, sagt Mariotti. Das liegt dann bereits deutlich über der Effizienz von PERC-Einzel-Zellen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.