From Lab to Fab: World Record Solar Cell Goes from Lab to Industry

In the HySPRINT lab at HZB, the team of Steve Albrecht developed a perovskite technology which can now be combined with mass produced silicon solar cells by QCELLS to make highly efficient tandem cells.

In the HySPRINT lab at HZB, the team of Steve Albrecht developed a perovskite technology which can now be combined with mass produced silicon solar cells by QCELLS to make highly efficient tandem cells. © Amran Al-Ashouri/HZB

Q CELLS and Helmholtz-Zentrum Berlin achieve a new world record efficiency for a 2-terminal tandem solar cell combining a mass-production ready silicon bottom cell based on Q.ANTUM technology and a top-cell based on perovskite technology. The efficiency is 28.7%.

Q CELLS, a renowned total energy solutions provider in solar, energy storage, downstream project business and energy retail, has set a new world-record tandem cell efficiency of 28.7% in collaboration with researchers at Helmholtz-Zentrum Berlin using a Q.ANTUM-based silicon bottom cell in combination with a perovskite-based top cell.

Q CELLS’ R&D team in Thalheim, Germany, has worked jointly with Helmholtz-Zentrum Berlin over the past three years to create a tandem solar cell comprising a silicon-based Q.ANTUMbottom cell and a perovskite-based top cell. This latest record efficiency result of 28.7% is an improvement of almost one percent point compared with the 2020 record value of 27.8 % (which was independently verified by the Fraunhofer ISE Callab). This boost in tandem efficiency has been enabled by improvement of both the perovskite and the silicon sub cells.  The research and development was partly funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) and the state of Saxony-Anhalt.

While the solar research community has witnessed even higher perovskite-tandem cell efficiencies, these records have been achieved using lab technology that is not directly transferrable into mass production. The achievement of Q CELLS and Helmholtz-Zentrum Berlin is noteworthy principally because the 28.7% efficiency was reached using an industry feasible and cost-efficient bottom cell structure based on the Q.ANTUM technology.

In the past year, Q CELLS announced that it is to boost its R&D investment in Germany to €125 million over the next three years. A sizeable portion of that figure is earmarked for the continuous support of Q CELLS’ R&D department on the commercialization of perovskite-silicon tandem technology.

“Our experts have achieved several world records for tandem cells combining perovskite top cells with other bottom cells on a laboratory scale. We promote knowledge and technology transfer and welcome the fruitful collaboration with Q CELLS. It is remarkable how close the jointly achieved efficiency with a mass production ready bottom cell already comes to what we can reach at a lab scale”, Prof. Dr. Bernd Rech, scientific director of HZB said.

Prof. Dr. Steve Albrecht, group leader at HZB and Juniorprofessor at Technische Universität Berlin added: “It is highly exciting that we enable this high tandem efficiency utilizing industry relevant bottom cells with a high market share, so there might be fast impact of the tandem technology to revolutionize the PV market.”

Dr. Daniel Jeong, CTO of Q CELLS, said: “Q CELLS is excited to announce this joint new world-record in tandem cell efficiency together with Helmholtz-Zentrum Berlin. Both teams of researchers have collaborated closely to develop a tandem cell technology, which would be able to accelerate the commercialization process and, ultimately, deliver to the industry a genuine leap forward in photovoltaic performance. Q CELLS is confident that it can once again shape the next-generation of solar cells, and will continue to invest heavily in supporting research and development in this field.”

 

About Q CELLS

Q CELLS is one of the world’s largest and most recognized photovoltaic manufacturers for its high-performance, high-quality solar cells and modules. It is headquartered in Seoul, South Korea (Global Executive HQ) and Thalheim, Germany (Technology & Innovation HQ) with its diverse international manufacturing facilities in the U.S., Malaysia, China, and South Korea. Q CELLS offers the full spectrum of photovoltaic products, applications and solutions, from cells and modules to kits to systems to large-scale solar power plants. Through its growing global business network spanning Europe, North America, Asia, South America, Africa and the Middle East, Q CELLS provides excellent services and long-term partnerships to its customers in the utility, commercial, governmental and residential markets. For more information, visit: www.q-cells.com.

Q CELLS/ HZB

  • Copy link

You might also be interested in

  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.