Predicting solar cell performance from terahertz and microwave spectroscopy

In the femtosecond laser laboratory of Dr. Dennis Friedrich at HZB, the transport properties of semiconductors can be determined using terahertz or microwave spectroscopy. For this purpose, a laser light pulse first excites the charge carriers in the material, which are then irradiated with electromagnetic waves (either THz or Microwave) and absorb some of them.

In the femtosecond laser laboratory of Dr. Dennis Friedrich at HZB, the transport properties of semiconductors can be determined using terahertz or microwave spectroscopy. For this purpose, a laser light pulse first excites the charge carriers in the material, which are then irradiated with electromagnetic waves (either THz or Microwave) and absorb some of them. © HZB

Many semiconducting materials are possible candidates for solar cells. In recent years, perovskite semiconductors in particular have attracted attention, as they are both inexpensive and easy to process and enable high efficiencies. Now a study with 15 participating research institutions shows how terahertz (TRTS) and microwave spectroscopy (TRMC) can be used to reliably determine the mobility and lifetime of the charge carriers in new semiconducting materials. Using these measurement data it is possible to predict the potential efficiency of the solar cell in advance and to classify the losses in the finished cell.  

The most important properties of a semiconductor to be used as a solar cell include the mobility and lifetime of electrons and "holes". Both quantities can be measured without contacts with spectroscopic methods using terahertz or microwave radiation. However, measurement data found in literature often differ by orders of magnitude. This has made it difficult to use them for reliable assessments of  material quality.

Reference samples measured

"We wanted to get to the bottom of these differences, and contacted experts from a total of 15 international laboratories to analyse typical sources of error and problems with the measurements," says Dr. Hannes Hempel from the HZB team led by Dr. Thomas Unold. The HZB physicists sent reference samples produced by the team of Dr. Martin Stolterfoht at University Potsdam to each laboratory with the perovskite semiconductor compound (Cs,FA,MA)Pb(I,Br)3) optimised for stability.

Better data for better prediction

One result of the joint work is the significantly more precise determination of the transport properties with terahertz or microwave spectroscopy. "We could identify some neuralgic points that have to be considered before the actual measurements takes place, which allows us to arrive at significantly better agreement of the results," Hempel emphasises.  

Another result of the study: With reliable measurement data and a more advanced analysis, the characteristics of the solar cell can also be calculated more precisely. "We believe that this analysis is of great interest for photovoltaic research, because it predicts the maximum possible efficiency of the material in a solar cell and reveals the influence of various loss mechanisms, such as transport barriers," says Unold. This applies not only to the material class of perovskite semiconductors, but also to other new semiconducting materials, which can thus be tested more quickly for their potential suitability.

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.