Knowledge transfer: BAIP consulting office becomes permanent at HZB

The BAIP Team (l.t.r.): Thorsten Kühn (Architecture, Consultancy, and Training), Björn Rau  (Office Head), Samira Jama Aden (Architecture, Consultancy, and Training), Markus Sauerborn (Network and Transfer).

The BAIP Team (l.t.r.): Thorsten Kühn (Architecture, Consultancy, and Training), Björn Rau  (Office Head), Samira Jama Aden (Architecture, Consultancy, and Training), Markus Sauerborn (Network and Transfer). © Katja Bilo

The BAIP consulting office for building-integrated photovoltaics has been launched as a knowledge transfer project in 2019, funded by the Helmholtz Association's Initiative and Networking Fund. In order to build a bridge between the world of construction and photovoltaics, the consulting office provides comprehensive knowledge for architects, planners, builder-owners, investors and urban developers. After an excellent evaluation, the BAIP consulting office will be permanently financed by HZB.

Classic rooftop photovoltaics are not suitable for every building. But there are now many more options for generating solar power where it is needed: Photovoltaic modules can be integrated into façades and other parts of the building envelope, and they are available in different colours and surface structures, thus also enabling aesthetic designs. However, these new solutions are not yet sufficiently known among experts in the world of construction.

In order to close this knowledge gap, Björn Rau and Markus Sauerborn founded the consulting office in 2019 as a knowledge transfer project and obtained funding from the Helmholtz Association's Initiative and Networking Fund. The BAIP office informs and advises stakeholders from the construction industry nationwide on the possible applications of building-integrated photovoltaics (BIPV) - and does so neutrally and independently of products. BAIP offers consultations and very quickly designed concrete training formats in cooperation with the chambers of architects in Germany and several universities. After being evaluated as excellent by the Helmholtz Association, the HZB is now anchoring the BAIP consulting office as a long-term institution in the field of solar energy and is taking over the permanent basic funding.

The BAIP advice centre is headed by Björn Rau and currently employs Samira Aden and Thorsten Kühn, two proven experts from the field of architecture, who design and implement the consultations and training formats for various specialist audiences.

arö

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.