Ultraschneller Röntgenblick in die elektronische Struktur von Photosäuren

Simulierte Änderungen der Ladungsverteilung der APTS-Photosäure und der konjugierten Photobase, die in Änderungen der Mulliken-Ladungen und des elektrischen Dipolmoments bei elektronischer Anregung resultieren.

Simulierte Änderungen der Ladungsverteilung der APTS-Photosäure und der konjugierten Photobase, die in Änderungen der Mulliken-Ladungen und des elektrischen Dipolmoments bei elektronischer Anregung resultieren. © MBI

F&ouml;rster-Zyklus einer Amin-Photos&auml;ure mit den elektronischen Grundzust&auml;nden S<sub>0</sub> und den ersten angeregten Zust&auml;nden S<sub>1</sub> der sauren (links) und basischen (rechts) Spezies. Die vier Stadien des Photos&auml;ureverhaltens in w&auml;ssriger L&ouml;sung sind schematisch dargestellt. In der Mitte sind transiente Weichr&ouml;ntgenspektren dargestellt, die an 8-Aminopyren-1,3,6-trisulfonat (APTS) gemessen wurden.

Förster-Zyklus einer Amin-Photosäure mit den elektronischen Grundzuständen S0 und den ersten angeregten Zuständen S1 der sauren (links) und basischen (rechts) Spezies. Die vier Stadien des Photosäureverhaltens in wässriger Lösung sind schematisch dargestellt. In der Mitte sind transiente Weichröntgenspektren dargestellt, die an 8-Aminopyren-1,3,6-trisulfonat (APTS) gemessen wurden. © MBI

Photosäuren sind Moleküle, die nach elektronischer Anregung ein Proton freisetzen und so den Säuregrad einer Flüssigkeit erhöhen. Die Pionierarbeit von Theodor Förster hat für solche Moleküle die direkte Beziehung zwischen der Wellenlänge der optischen Absorption und den Säureeigenschaften aufgezeigt, mit der die Erhöhung des Säuregrades im ersten elektronisch angeregten Zustand quantifiziert werden kann. Zugrundeliegende vollständige Beschreibungen der mikroskopischen Effekte die das Photosäure-Phänomen erklären sind jedoch seither spärlich geblieben. Ultraschnelle Röntgenspektroskopie, bei der die elektronische Struktur einer protonenliefernden Gruppe einer aromatischen Amin-Photosäure lokal untersucht wird, hat nun einen direkten Einblick in die Veränderungen der elektronischen Struktur ermöglicht. Die seit langem offene Frage nach der Photoazidität ist nun endlich geklärt: Die wichtigsten elektronischen Strukturänderungen finden auf der Basenseite des sogenannten Förster-Zyklus statt, während die Säureseite eine untergeordnete Rolle spielt. 

Photosäuren sind seit mehr als 70 Jahren bekannt. Theodor Förster war der erste, der die Beobachtungen der Absorptions- und Fluoreszenzspektren von Photosäuren korrekt beschrieb und die Positionen der elektronischen Übergänge, die zu optischen Absorptionsbanden führen, mit den erhöhten Säureeigenschaften von Photosäuren im elektronisch angeregten Zustand in Verbindung brachte. In den folgenden Jahrzehnten wurden zahlreiche Forschungsarbeiten durchgeführt, doch abgesehen von quantenchemischen Berechnungen von Photosäuremolekülen mittlerer Größe, die sich auf die intramolekularen elektronischen Ladungsverteilungsänderungen der protonenliefernden Anteile von Fotosäuren konzentrierten, blieben die mikroskopischen Erkenntnisse begrenzt. Einige dieser Studien haben - in Übereinstimmung mit früheren Vorschlägen, die auf physikalisch-organischen Prinzipien beruhen - gezeigt, dass die Auswirkungen der elektronischen Anregung auf der konjugierten Photobasenseite des Förster-Zyklus viel ausgeprägter sind (Abb. 2).

Wissenschaftler des Max-Born-Instituts in Berlin, der Universität Stockholm, der Universität Hamburg, des Helmholtz-Zentrums Berlin, der Ben-Gurion Universität des Negev in Beersheva und der Universität Uppsala haben nun erfolgreich einen neuartigen kombinierten experimentellen und theoretischen Ansatz verfolgt, um die elektronischen Ladungsverteilungen von Photosäuren entlang der vier Stadien der Photosäuren zu untersuchen, die einen direkten mikroskopischen Einblick in die elektronischen Strukturänderungen der protonenspendenden Amingruppe eines Aminopyren-Derivats in wässriger Lösung ermöglichen. Die K-Kanten-Röntgenabsorptionsspektren der Stickstoffatome des Moleküls wurden am Synchrotron BESSY II im Transmissionsmodus gemessen, um die elektronische Struktur auf ultrakurzen Zeitskalen lokal zu untersuchen. Zusammen mit quantenchemischen Berechnungen ergeben diese Ergebnisse ein konsistentes Bild des Photosäureverhaltens die in Abb. 1 dargestellt sind: Die Änderung der elektronischen Ladungsverteilungen der protonenspendenden Gruppe im angeregten Zustand sind auf der Photosäureseite nur gering, wobei sie auf der konjugierten Photobasenseite erheblich stärker ausfallen. Die Änderung des Gesamtdipolmoments des gesamten Moleküls ist jedoch ebenso wichtig wie die Änderungen der lokalen Ladungsverteilung, so dass die Solvatationsdynamik durch das Lösungsmittel Wasser der zweite wichtige Faktor ist, der die Stärke einer Photosäure bestimmt.

MBI

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.