Forschende entdecken, warum Sehnen stark wie Drahtseile sind

Unter dem Elektronenmikroskop: Kollagenfaserbündel nach der Mineralisation mit dem Knochenmineral Kalziumphosphat

Unter dem Elektronenmikroskop: Kollagenfaserbündel nach der Mineralisation mit dem Knochenmineral Kalziumphosphat © Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Ein Team am Max-Planck-Institut für Kolloid- und Grenzflächenforschung (MPIKG) hat mithilfe von BESSY II neue Eigenschaften des Kollagens entdeckt: Während der Einlagerung von Mineralen in Kollagenfasern entsteht eine Kontraktionsspannung, die hundertfach stärker ist als die von Muskelkraft. Die Veränderungen der Kollagenstruktur wurden mittels Röntgenbeugung an der Synchrotronsstrahlungsquelle BESSY II in Berlin-Adlershof beobachtet, während die Mineralisation stattfand.

„Dieser universelle Mechanismus der Mineralisation von organischen Fasergeweben könnte auf technische Hybridmaterialien übertragen werden, um dort beispielsweise eine hohe Bruchfestigkeit zu erreichen,“ sagt Prof. Dr. Dr.h.c. Peter Fratzl, Direktor am MPIKG.

Das faserbildende Strukturprotein Kollagen kommt unter anderem in Sehnen, der Haut und Knochen vor.  Aus medizinischer bzw. biologischer Sicht ist es interessant zu verstehen, was beim Prozess der Mineralisation in Knochen passiert. Viele Knochenkrankheiten gehen mit Veränderungen des Mineralgehalts in Knochen und dadurch veränderten Eigenschaften einher.

Lesen Sie die vollständige Presseinformation auf der Webseite des MPIKG.

(red/sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.