Researchers discover why tendons are strong as wire ropes

Under the electron microscope: collagen fiber bundle after mineralization with (the bone mineral) calcium phosphate.

Under the electron microscope: collagen fiber bundle after mineralization with (the bone mineral) calcium phosphate. © Max-Planck-Institut für Kolloid- und Grenzflächenforschung

A team at the Max Planck Institute of Colloids and Interfaces (MPICI) has discovered with help of BESSY II new properties of collagen: During the intercalation of minerals in collagen fibers, a contraction tension is generated that is hundreds of times stronger than muscle strength. The associated changes in the collagen structure were observed using X-ray diffraction at the BESSY II synchrotron in Berlin-Adlershof while mineralization was taking place.

"This universal mechanism of mineralization of organic fiber tissues could be transferred to technical hybrid materials, for example, to achieve high breaking strength there," says Prof. Dr. Dr.h.c. Peter Fratzl, Director at the institute.

The fiber-forming structural protein collagen is found in tendons, skin and bones, among other places. It is also interesting from a medical or biological point of view to understand what happens in the process of mineralization in bones. Many bone diseases are associated with changes in mineral content in bones and thus altered properties.

Read the full press release on the MPIKG website.

(red/sz)


You might also be interested in

  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.
  • BESSY II: Molecular orbitals determine stability
    Science Highlight
    07.02.2024
    BESSY II: Molecular orbitals determine stability
    Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.