Researchers discover why tendons are strong as wire ropes

Under the electron microscope: collagen fiber bundle after mineralization with (the bone mineral) calcium phosphate.

Under the electron microscope: collagen fiber bundle after mineralization with (the bone mineral) calcium phosphate. © Max-Planck-Institut für Kolloid- und Grenzflächenforschung

A team at the Max Planck Institute of Colloids and Interfaces (MPICI) has discovered with help of BESSY II new properties of collagen: During the intercalation of minerals in collagen fibers, a contraction tension is generated that is hundreds of times stronger than muscle strength. The associated changes in the collagen structure were observed using X-ray diffraction at the BESSY II synchrotron in Berlin-Adlershof while mineralization was taking place.

"This universal mechanism of mineralization of organic fiber tissues could be transferred to technical hybrid materials, for example, to achieve high breaking strength there," says Prof. Dr. Dr.h.c. Peter Fratzl, Director at the institute.

The fiber-forming structural protein collagen is found in tendons, skin and bones, among other places. It is also interesting from a medical or biological point of view to understand what happens in the process of mineralization in bones. Many bone diseases are associated with changes in mineral content in bones and thus altered properties.

Read the full press release on the MPIKG website.

(red/sz)


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.

  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.