HZB hosts Humboldt Research Award Winner Alexei Gruverman

An award by Humboldt-foundation enables Professor Alexei Gruverman to visit the HZB institute "Functional oxides for energy efficient information technology". 

An award by Humboldt-foundation enables Professor Alexei Gruverman to visit the HZB institute "Functional oxides for energy efficient information technology".  © privat

Professor Alexei Gruverman was granted a Humboldt Research Award in October 2020.  Due to the COVID pandemic, he could not travel until this year. For a few months he is now hosted by Helmholtz-Zentrum Berlin at the Institute “Functional oxides for energy efficient information technology”. 

The renowned award is endowed with 60 000 Euros and is presented annually by the Alexander von Humboldt Foundation to outstanding scientists from abroad to support collaborative projects with researchers in Germany.

“We are very much honored and happy to welcome Alexei Gruverman at the HZB. He is a worldwide leading scientist in the field of nanoscale ferroelectrics. We will further develop our cooperation with him on several topics”, says Prof. Catherine Dubourdieu, head of the institute “Functional oxides for energy efficient information technology” at HZB.  

Professor Alexei Gruverman is a Charles Bessey Professor at the Department of Physics and Astronomy, University of Nebraska-Lincoln, USA. His research includes diverse scientific subjects from nanoscale static and dynamic properties of ferroic materials, to electronic properties of polar surfaces, and electromechanical properties of biomaterials.

The Humboldt Research Award recognizes his outstanding research achievements in the field of fundamental studies of nanoscale physical phenomena in a wide range of materials using a variety of scanning probe microscopy (SPM) methods. Gruverman has pioneered the development of piezoresponse force microscopy (PFM), which since its inception has become a method of choice in both academic and industrial groups for the investigation of the nanoscale properties of ferroelectric materials and structures. Other major scientific accomplishments include the manipulation of ferroelectric domains at the nanoscale, the development of an approach for fast switching dynamics in ferroelectric capacitors, the demonstration of the tunneling electroresistance effect in ferroelectrics and nanoscale studies of electromechanical behavior of biological systems.

His current research topics include the emergence of the ferroelectric ordering in 2D electronic materials and the exploration of the physical mechanism of their polarization-coupled transport properties.

Gruverman plans to spend this first stay associated with the Humboldt Research Award in Germany at the HZB in Berlin and NamLab in Dresden.

Institute Functional Oxides for Energy-Efficient IT

  • Copy link

You might also be interested in

  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.