HZB hosts Humboldt Research Award Winner Alexei Gruverman

An award by Humboldt-foundation enables Professor Alexei Gruverman to visit the HZB institute "Functional oxides for energy efficient information technology". 

An award by Humboldt-foundation enables Professor Alexei Gruverman to visit the HZB institute "Functional oxides for energy efficient information technology".  © privat

Professor Alexei Gruverman was granted a Humboldt Research Award in October 2020.  Due to the COVID pandemic, he could not travel until this year. For a few months he is now hosted by Helmholtz-Zentrum Berlin at the Institute “Functional oxides for energy efficient information technology”. 

The renowned award is endowed with 60 000 Euros and is presented annually by the Alexander von Humboldt Foundation to outstanding scientists from abroad to support collaborative projects with researchers in Germany.

“We are very much honored and happy to welcome Alexei Gruverman at the HZB. He is a worldwide leading scientist in the field of nanoscale ferroelectrics. We will further develop our cooperation with him on several topics”, says Prof. Catherine Dubourdieu, head of the institute “Functional oxides for energy efficient information technology” at HZB.  

Professor Alexei Gruverman is a Charles Bessey Professor at the Department of Physics and Astronomy, University of Nebraska-Lincoln, USA. His research includes diverse scientific subjects from nanoscale static and dynamic properties of ferroic materials, to electronic properties of polar surfaces, and electromechanical properties of biomaterials.

The Humboldt Research Award recognizes his outstanding research achievements in the field of fundamental studies of nanoscale physical phenomena in a wide range of materials using a variety of scanning probe microscopy (SPM) methods. Gruverman has pioneered the development of piezoresponse force microscopy (PFM), which since its inception has become a method of choice in both academic and industrial groups for the investigation of the nanoscale properties of ferroelectric materials and structures. Other major scientific accomplishments include the manipulation of ferroelectric domains at the nanoscale, the development of an approach for fast switching dynamics in ferroelectric capacitors, the demonstration of the tunneling electroresistance effect in ferroelectrics and nanoscale studies of electromechanical behavior of biological systems.

His current research topics include the emergence of the ferroelectric ordering in 2D electronic materials and the exploration of the physical mechanism of their polarization-coupled transport properties.

Gruverman plans to spend this first stay associated with the Humboldt Research Award in Germany at the HZB in Berlin and NamLab in Dresden.

Institute Functional Oxides for Energy-Efficient IT

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.