Jan Lüning heads HZB Institute for Electronic Structure Dynamics

© HG Medien

The HZB Institute for Electronic Structure Dynamics, newly founded on 1 May, develops experimental techniques and infrastructures to investigate the dynamics of elementary microscopic processes in novel material systems. This will help to optimise functional materials for sustainable technologies.

Prof. Dr. Jan Lüning is an internationally recognised expert in research with synchrotron radiation. Before joining HZB in 2018, he was a professor at Sorbonne University in Paris and worked at the French synchrotron SOLEIL.

Three groups belong to the institute: Dr Ulrich Schade's group operates the IRIS infrared beamline at the BESSY II synchrotron radiation source. He examines molecular processes in novel functional materials that enable, for example, energy conversion or catalytic water splitting.

The group "Ultra-Short-Time Laser Spectroscopy" led by Dr. Iain Wilkinson works in the laser laboratories ULLAS and LIDUX and investigates the dynamics of reactions in aqueous solutions and at aqueous interfaces on ultra-short time scales.

The third group, led by Dr. Christian Schüssler-Langeheine and Dr. Niko Pontius, operates the Femtoslicing Facility at BESSY II and conducts research on materials with complex phase transitions that have the potential to make electronic and magnetic devices smaller, faster and more energy efficient.

The institute's research activities are part of the Helmholtz Association's Programme-Oriented Funding (POF IV) in the Research Field Matter.

red.

  • Copy link

You might also be interested in

  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.
  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.