Jan Lüning heads HZB Institute for Electronic Structure Dynamics
The HZB Institute for Electronic Structure Dynamics, newly founded on 1 May, develops experimental techniques and infrastructures to investigate the dynamics of elementary microscopic processes in novel material systems. This will help to optimise functional materials for sustainable technologies.
Prof. Dr. Jan Lüning is an internationally recognised expert in research with synchrotron radiation. Before joining HZB in 2018, he was a professor at Sorbonne University in Paris and worked at the French synchrotron SOLEIL.
Three groups belong to the institute: Dr Ulrich Schade's group operates the IRIS infrared beamline at the BESSY II synchrotron radiation source. He examines molecular processes in novel functional materials that enable, for example, energy conversion or catalytic water splitting.
The group "Ultra-Short-Time Laser Spectroscopy" led by Dr. Iain Wilkinson works in the laser laboratories ULLAS and LIDUX and investigates the dynamics of reactions in aqueous solutions and at aqueous interfaces on ultra-short time scales.
The third group, led by Dr. Christian Schüssler-Langeheine and Dr. Niko Pontius, operates the Femtoslicing Facility at BESSY II and conducts research on materials with complex phase transitions that have the potential to make electronic and magnetic devices smaller, faster and more energy efficient.
The institute's research activities are part of the Helmholtz Association's Programme-Oriented Funding (POF IV) in the Research Field Matter.
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23708;sprache=en
- Copy link
-
HZB patent for semiconductor characterisation goes into serial production
An HZB team has developed an innovative monochromator that is now being produced and marketed by a company. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
-
Alternating currents for alternative computing with magnets
A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.
-
BESSY II: Heterostructures for Spintronics
Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.