Wie die Spin-Kopplung die katalytische Aktivierung von Sauerstoff beinflusst

Ein Team am EPR4Energy-Joint lab von HZB und MPI CEC hat ein neues Verfahren der THz-EPR-Spektroskopie entwickelt, um die katalytische Aktivierung von molekularem Sauerstoff durch Kupferkomplexe zu untersuchen.

Ein Team am EPR4Energy-Joint lab von HZB und MPI CEC hat ein neues Verfahren der THz-EPR-Spektroskopie entwickelt, um die katalytische Aktivierung von molekularem Sauerstoff durch Kupferkomplexe zu untersuchen. © T. Lohmiller/HZB

Ein Team am EPR4Energy-Joint lab von HZB und MPI CEC hat ein neues Verfahren der THz-EPR-Spektroskopie entwickelt, um die katalytische Aktivierung von molekularem Sauerstoff durch Kupferkomplexe zu untersuchen. Die Methode erlaubt Einblicke in bisher nicht zugängliche Spin-Spin-Wechselwirkungen und die Funktion neuartiger katalytischer und magnetischer Materialien.

Molekularer Sauerstoff (O2) ist ein bevorzugtes Oxidationsmittel der Green Chemistry. Allerdings erfordert die Aktivierung von O2 und die Kontrolle seiner Reaktivität eine präzise Einstellung der Spinzustände in den reaktiven Zwischenprodukten. In der Natur wird dies durch Metalloenzyme erreicht, die O2 an Eisen- oder Kupferionen binden und Spin-Flip-Prozesse durch metallvermittelte Spin-Bahn-Kopplungen ermöglichen. Bei Dikupfer-Metalloproteinen des Typs III, die am Sauerstofftransport und an der Oxygenierung phenolischer Substrate beteiligt sind, war über den Weg, der nach der Bindung von Triplett-Sauerstoff zu einer Dikupfer-Peroxo-Schlüsselspezies mit stark stabilisiertem Singulett-Grundzustand führt, bisher nur wenig bekannt.

Durch ein ausgeklügeltes Ligandendesign ist es der Arbeitsgruppe um Prof. Franc Meyer an der Universität Göttingen nun gelungen eine Serie von Modellkomplexen zu isolieren, die das Anfangsstadium der Sauerstoffbindung an Dikupferstellen nachbilden und einen Triplett-Grundzustand aufweisen.

Ein Team am EPR4Energy-Joint lab von HZB und MPI CEC ergänzte diesen Durchbruch in der chemischen Synthese durch einen neuen Ansatz der THz-EPR-Spektroskopie. Diese Methode, die in der Gruppe von Alexander Schnegg am MPI CEC entwickelt wurde, wurde zum ersten Mal angewandt, um den funktionsbestimmenden antisymmetrischen Austausch in gekoppelten Dikupfer(II)-Komplexen zu untersuchen. Die neue Methode ermöglichte den Nachweis der Gesamtheit der Spinzustandsübergänge im System und im vorliegenden Fall die Identifikation von antisymmetrischen Austauschwechselwirkungen als effizientem Mischungsmechanismus für den Triplett-zu-Singlett-Übergang in biologisch relevanten Peroxodicopper(II)-Zwischenstufen. Thomas Lohmiller, einer der Erstautoren der Studie, erklärt: "Neben dem Erkenntnisgewinn über dieses wichtige System eröffnet unsere Methode die Möglichkeit, bisher nicht zugängliche Spin-Spin-Wechselwirkungen in einer Vielzahl neuartiger katalytischer und magnetischer Materialien zu untersuchen."

CEC/A. Schnegg

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.