How electron spin coupling affects catalytic oxygen activation

A team at the EPR4Energy joint lab of HZB and MPI CEC has developed a new THz EPR spectroscopy method to study the catalytic activation of molecular oxygen by copper complexes.

A team at the EPR4Energy joint lab of HZB and MPI CEC has developed a new THz EPR spectroscopy method to study the catalytic activation of molecular oxygen by copper complexes. © T. Lohmiller/HZB

A team at the EPR4Energy joint lab of HZB and MPI CEC has developed a new THz EPR spectroscopy method to study the catalytic activation of molecular oxygen by copper complexes. The method allows insights into previously inaccessible spin-spin interactions and the function of novel catalytic and magnetic materials.

 

Molecular oxygen (O2) is a preferred oxidant in green chemistry. However, activation of O2 and control of its reactivity requires precise adjustment of the spin states in the reactive intermediates. In nature, this is achieved by metalloenzymes that bind O2 at iron or copper ions, and spin-flip processes are enabled through metal-mediated spin-orbit couplings allowing for mixing of states. In the case of type III dicopper metalloproteins involved in oxygen transport and oxygenation of phenolic substrates, little was known about the pathway leading to a dicopper peroxo key species with a stabilized singlet ground state after triplet oxygen binding.

Through a sophisticated ligand design, the research group led by Prof. Franc Meyer at the University of Göttingen has now succeeded in isolating a series of model complexes that mimic the initial stage of oxygen binding at dicopper sites and exhibit a triplet ground state. Researchers from the EPR4Energy joint lab of HZB and MPI CEC complemented this breakthrough in chemical synthesis with a new approach of THz-EPR spectroscopy. This method, developed in Alexander Schnegg's group at MPI CEC, was applied for the first time to study the function-determining antisymmetric exchange in coupled dicopper(II) complexes.

The new method allowed for detection of the entirety of spin state transitions in the system, which leads to propose antisymmetric exchange as an efficient mixing mechanism for the triplet-to-singlet intersystem crossing in biorelevant peroxodicopper(II) intermediates. Thomas Lohmiller, one of the first authors of the study, explains, "In addition to the knowledge gained about this important system, our method opens up the possibility of studying previously inaccessible spin-spin interactions in a variety of novel catalytic and magnetic materials."

CEC/A. Schnegg


You might also be interested in

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups. 

  • Clean cooking fuel with a great impact for southern Africa
    News
    19.04.2024
    Clean cooking fuel with a great impact for southern Africa
    Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.