Shutdown at BESSY II: new supply technology ensures long-term operation

During the shutdown, the low voltage main distribution panel will be completely renewed (here in the picture: before the conversion).

During the shutdown, the low voltage main distribution panel will be completely renewed (here in the picture: before the conversion). © HZB/A. Knoch

The conversion work is in full swing: the old components are being dismantled and replaced.

The conversion work is in full swing: the old components are being dismantled and replaced. © HZB/A. Knoch

The X-ray source BESSY II is in a three-month period of shutdown. During this period, the low voltage main distribution panel in the supply building outside the electron storage ring is being renovated. This will secure the long-term operation of BESSY II over the next decade.

“The feeder cubicles for the power supply of the BESSY II machine are key to its reliable operation,” relates the responsible project manager Andreas Knoch from Technical Services (FM-T). The equipment section of the low voltage main distribution board comprises 36 control panels. They provide electricity to important components for operating the accelerator facility. These include, among other things, power supply units, magnets, high frequency systems, vacuum systems, climate control, osmosis water systems and IT systems.

“We need to replace the respective switchgear one-to-one, since there are no substitutes for the important components due to their age. The control cabinets will be equipped with components similar to the existing ones, except with adapted elements and additionally universal meters, active arc protection and new data bus technology in all outputs,” Knoch adds. Furthermore, new chillers will be installed during the shutdown. These will ensure the climate control in the electron storage ring runs reliably.

The interrelated work during the shutdown is being coordinated by Ingo Müller together with Christian Jung. The three months of “darkness” will therefore be used for other tasks as well: among others, for example, construction is continuing for the new experimental stations of the “BElChem” lab. In this joint project, the Max Planck Society and HZB are setting up new experimental capabilities at BESSY II for analysing material systems for electrochemical and catalytic applications. This work will continue even after the summer shutdown has ended.

Even if the shutdown were to continue into August, the interruption is the best alternative in which the least amount of measurement time is lost. “After all, all of our measures are aimed at one thing: that BESSY II will be available to our users stably and without unplanned interruptions,” says Christian Jung.

BESSY II will be started up again from 8 August 2022. Three weeks after that, on 30 August, HZB will once again be welcoming its users to the BESSY II beamlines.

 

(sz)

  • Copy link

You might also be interested in

  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.
  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.
  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.