Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert

Unter dem Transmissionselektronenmikroskop ist die Bakterienzelle sichtbar, in der sich mehrere magnetische Nanopartikel zu einer Kette angeordnet haben. Die Skala zeigt 500 Nanometer. 

Unter dem Transmissionselektronenmikroskop ist die Bakterienzelle sichtbar, in der sich mehrere magnetische Nanopartikel zu einer Kette angeordnet haben. Die Skala zeigt 500 Nanometer.  © L. Marcano / HZB

TEM-Aufnahme: Auch die Geometrie der Nanopartikel spielt eine Rolle. Die Skala zeigt 100 Nanometer. 

TEM-Aufnahme: Auch die Geometrie der Nanopartikel spielt eine Rolle. Die Skala zeigt 100 Nanometer.  © L. Marcano / HZB

Magnetische Nanostrukturen sind vielversprechende Werkzeuge für medizinische Anwendungen. Eingebaut in biologische Vehikel, lassen sich diese dann durch externe Magnetfelder an ihren Einsatzort im Körper steuern, wo sie Medikamente freisetzen oder Krebszellen zerstören können. Dazu ist jedoch die genaue Kenntnis der magnetischen Eigenschaften solcher Nanoteilchen nötig. Bisher konnten solche Informationen nur gemittelt über tausende Nanopartikel gewonnen werden. Nun hat ein Team am HZB eine Methode entwickelt, um die charakteristischen Parameter jedes einzelnen magnetischen Nanopartikels zu bestimmen.

 

Stellen Sie sich ein winziges Fahrzeug vor, das mit äußeren Magnetfeldern präzise durch den menschlichen Körper gesteuert wird. Am Zielort angekommen, setzt das Vehikel ein Medikament frei oder heizt sich auf, um Krebszellen zu zerstören, ohne gesundes Gewebe zu beeinträchtigen. Eine multidisziplinäre Gruppe an der Universidad del País Vasco, Leioa, Spanien, erforscht dafür die Talente so genannter magnetotaktischer Bakterien. Diese besitzen die überraschende Eigenschaft, magnetische Eisenoxid-Nanopartikel in ihren Zellen zu bilden: Mit einem Durchmesser von etwa 50 Nanometern sind sie rund 100-mal kleiner als Blutzellen. Sie ordnen sich im Inneren des Bakteriums zu einer Kette an. Das spanische Team verfolgt die Idee, solche „magnetischen Bakterien" zur Behandlung von Krebs durch magnetische Hyperthermie einzusetzen: An den Krebsherd gelenkt, sollen die magnetischen Nanostrukturen durch externe Felder erhitzt werden.

Durchschnittswerte sind nicht ausreichend

Doch der Erfolg solcher Anwendungen hängt entscheidend von den magnetischen Eigenschaften der einzelnen Nanomagnete ab. Da die Signale solcher winzigen magnetischen Strukturen aber extrem schwach sind, musste man bisher Tausende solcher Strukturen messen, um über Mittelwerte aussagekräftige Daten zu erhalten. Dies hatte die Entwicklung maßgeschneiderter Nanomagnetanwendungen erheblich eingeschränkt.

Jetzt jedes Nanopartikel einzeln

Nun hat das Team aus Spanien mit der Gruppe um Sergio Valencia am HZB zusammengearbeitet, um die magnetischen Eigenschaften der Nanoteilchen im Inneren dieser Bakterien im Detail zu erforschen. Die spanische Physikerin Lourdes Marcano hat während ihres Postdoc-Aufenthaltes im Team von Valencia bei BESSY II eine neue Methode entwickelt: „Wir können jetzt präzise Informationen über die magnetischen Eigenschaften der einzelnen Nanomagnete erhalten“, sagt sie.

Magnetische Anisotropie genau vermessen

Die Methode erlaubt es, die magnetischen Eigenschaften einzelner magnetischer Nanostrukturen zu messen, auch wenn sie in biologische Einheiten eingebettet sind. Dafür kombinierten die Forschenden Aufnahmen am Raster-Transmissions-Röntgenmikroskop MAXYMUS bei BESSY II mit theoretischen Simulationen, um Informationen über die so genannte magnetische Anisotropie jedes einzelnen Nanopartikels im Sichtfeld des Mikroskops zu erhalten. Dies ermöglichte es, die magnetische Anisotropie von Nanopartikeln im Inneren eines Bakteriums exakt zu bestimmen. Die magnetische Anisotropie ist ein wichtiger Parameter für die Kontrolle und Steuerung von magnetischen Nanopartikeln, da sie beschreibt, wie ein magnetisches Nanopartikel auf externe Magnetfelder reagiert.

Auf dem Weg zur Standard-Labortechnik

„Die magnetische Abbildung von magnetischen Nanopartikeln im Inneren einer biologischen Zelle mit ausreichender räumlicher Auflösung erfordert den Einsatz von Röntgenmikroskopen. Leider ist dies aktuell nur an Großforschungsanlagen wie BESSY II möglich, die ausreichend intensive Röntgenstrahlung liefern. In Zukunft könnte diese Methode jedoch mit der Entwicklung kompakter Plasma-Röntgenquellen zu einer Standard-Labortechnik werden", sagt Sergio Valencia.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.