Neue Entdeckungen zur Zinkspeicherung im Körper

Konfokalmikroskopien der nierenähnlichen Malpighischen Gefäße einer Drosophila-Larve bei zwei Vergrößerungen. Mehr Informationen siehe unten.

Konfokalmikroskopien der nierenähnlichen Malpighischen Gefäße einer Drosophila-Larve bei zwei Vergrößerungen. Mehr Informationen siehe unten. © Erika Garay (Cinvestav)

Viele Menschen leiden an Zinkmangel, welcher Immunschwäche bei Erwachsenen und insbesondere bei Kindern zur Folge hat. Dies ist z.B. in der mexikanischen Bevölkerung eine Herausforderung für das Gesundheitssystem. Forschende vor Ort suchen nach Erklärungen und haben mit einer internationalen Gruppe von Synchrotronexpert*innen neue Erkenntnisse gewonnen – und zwar an Drosophila-Fliegen, die als Modellsystem auch für den menschlichen Zink-Stoffwechsel dienen können.
Dank Strahlzeiten an BESSY II und an der SLS (PSI) konnten sie aufzeigen, dass die Zinkvorräte in Drosophila-Fliegen vom Tryptophan-Gehalt in der Nahrung abhängen.

„Die initialen Messungen haben an der Spektroskopie Beamline KMC-3 stattgefunden,“ erzählt Nils Schuth, DFG-Fellow, der aktuell in Mexiko am Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav) forscht. „Wir haben Organe einer Fruchtfliege entnommen und direkt Messungen am Gewebe durchgeführt. Aus den Messdaten konnten wir sehr aufschlussreiche Informationen gewinnen. Das war der erste Schritt, der uns weitergebracht hat. In einem zweiten Schritt ging es nun darum die biologischen Ergebnisse mit verschiedenen synthetisierten chemischen Komplexen zu vergleichen.“

Das Projekt startete in 2019. Dann kamen die Pandemie und die Reisebeschränkungen. Die nächsten Messungen wurden daher am Paul Scherrer Institut (PSI) an der SLS durchgeführt, wo eine Kooperation zwischen beiden Forschungseinrichtungen bestand. Im Frühjahr 2021 haben neue Messungen an BESSY II die Entdeckungen bestätigt.

Nils Schuth ist begeistert von den Messergebnissen, die es nun ermöglichen, eine Brücke zwischen chemischen Prozessen und biologischen Funktionen zu schlagen. „Die Messungen an den beiden Lichtquellen haben uns den Vergleich von Material ermöglicht, das aus Fliegen mit oder ohne Zinkspeicher isoliert wurde.“ Diese Studien zeigen die Existenz eines neuen chemischen Komplexes von Zink mit 3-Hydroxykynurenin (einem Tryptophan Produkt) und Chlorid, der für die Zinkspeicherung wesentlich ist.

Die Forschung an Fruchtfliegen trägt wesentlich dazu bei, die Zinkspeicherung im Menschen besser zu verstehen und könnte dabei helfen, Ernährungsergänzungen zu entwickeln. „Unsere Resultate könnten sogar bei der Behandlung von COVID-19 eine Rolle spielen, denn viele Kranke leiden auch an Zinkmangel und verändertem Tryptophan Haushalt,“ unterstreicht Nils Schuth.

Zum Bild:

In rot zu sehen sind die Zellkerne (große Kreise) und die Tryptophan-Produkte 3-Hydroxykynurenin und Xanthurensäure (kleine Kreise). Sichtbar in grün sind Zinktransporter der Zellen, welche eine hohe Zinkkonzentration andeuten. Das Überlappen der kleinen roten und grünen Kreise deutet an, dass sich Zink zusammen mit 3-Hydroxykynurenin und Xanthurensäure in Speichergranulaten anreichert. Die Experimente am BESSY II haben gezeigt, dass sich in diesen Speichergranulaten ein chemischer Komplex von Zink mit 3-Hydroxykynurenin und Chlorid bildet. Die Ergebnisse legen nahe, dass Tryptophan-Produkte eine wichtige Rolle bei der intrazellulären Speicherung von Zink spielen.

 

Finden Sie hier einen detaillierten Bericht zu der Forschung (in Englisch): https://fanismissirlis.blog/2022/04/11/chemical-complex-regulates-body-zinc/

fk/ns

Das könnte Sie auch interessieren

  • HZB-Physiker folgt Ruf nach Südkorea
    Nachricht
    25.01.2023
    HZB-Physiker folgt Ruf nach Südkorea
    Seit 2016 hat der Beschleunigerphysiker Ji-Gwang Hwang am HZB in der Abteilung Speicherring- und Strahlphysik geforscht. In mehreren Projekten hat er wichtige Beiträge zur Strahldiagnostik geleistet. Nun kehrt er in seine Heimat Südkorea zurück, als Professor für Physik an der Gangneung-Wonju National University.
  • Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Science Highlight
    18.01.2023
    Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Ein Wissenschaftsteam unter Leitung von Forschenden des Max-Born-Instituts in Berlin, des Helmholtz-Zentrums Berlin, des Brookhaven National Laboratory (USA) und des Massachusetts Institute of Technology (USA) hat eine neue Methode entwickelt, um mit starken Röntgenquellen Videos von Fluktuationen in Materialien auf der Nanoskala aufzunehmen. Die Methode ist in der Lage, scharfe, hochauflösende Bilder zu machen, ohne das Material durch zu starke Belichtung zu beeinträchtigen. Dafür entwickelten die Wissenschaftler*innen einen Algorithmus, der in unterbelichteten Aufnahmen Muster erkennen kann. Im Fachjournal Nature beschreiben sie die Methode des Coherent Correlation Imaging (CCI) und stellen Ergebnisse für Proben aus dünnen magnetischen Schichten vor.
  • Lesetipp: Bunsen-Magazin mit Schwerpunkt Wasserforschung
    Nachricht
    13.01.2023
    Lesetipp: Bunsen-Magazin mit Schwerpunkt Wasserforschung
    Wasser besitzt nicht nur einige bekannte Anomalien, sondern steckt noch immer voller Überraschungen. Die erste Ausgabe 2023 des Bunsen-Magazins widmet sich der molekularen Wasserforschung, vom Ozean bis zu Prozessen bei der Elektrolyse. Das Heft präsentiert Beiträge von Forschenden, die im Rahmen einer europäischen Forschungsinitiative im „Centre for Molecular Water Science“ (CMWS) kooperieren. Ein Team am HZB stellt darin Ergebnisse aus der Synchrotronspektroskopie von Wasser vor. Denn an modernen Röntgenquellen lassen sich molekulare und elektronische Prozesse in Wasser im Detail untersuchen.