Atomare Verschiebungen in Hochentropie-Legierungen untersucht

Die Gitterplätze der Superzelle werden nach dem Zufallsprinzip mit den fünf Elementen gefüllt; in der Ausgangskonfiguration liegen alle Schichten (xy-Ebene) genau übereinander. In der endgültigen Konfiguration sind die Elemente mehr oder weniger verschoben, so dass auch die unteren Ebenen sichtbar werden. Diese Verschiebungen wurden durch die Analysen der experimentellen Spektren mit Reverse-Monte-Carlo-Simulationen ermittelt.

Die Gitterplätze der Superzelle werden nach dem Zufallsprinzip mit den fünf Elementen gefüllt; in der Ausgangskonfiguration liegen alle Schichten (xy-Ebene) genau übereinander. In der endgültigen Konfiguration sind die Elemente mehr oder weniger verschoben, so dass auch die unteren Ebenen sichtbar werden. Diese Verschiebungen wurden durch die Analysen der experimentellen Spektren mit Reverse-Monte-Carlo-Simulationen ermittelt. © A.Kuzmin / University of Latvia and A. Smekhova / HZB

Hochentropie-Legierungen aus 3d-Metallen haben faszinierende Eigenschaften, die Anwendungen im Energiesektor in Aussicht stellen. Ein internationales Team hat nun lokale Verschiebungen auf atomarer Ebene in einer hochentropischen Cantor-Legierung aus Chrom, Mangan, Eisen, Kobalt und Nickel untersucht. Mit spektroskopischen Analysen an BESSY II und statistischen Simulationen konnten sie das Verständnis dieser Materialgruppe deutlich erweitern.

Hochentropie-Legierungen sind für ganz unterschiedliche Anwendungen als Energiematerialien im Gespräch: Einige Materialien aus dieser Gruppe können Wasserstoff speichern, andere eignen sich für die edelmetallfreie Elektrokatalyse, als Superkondensatoren oder zur Abschirmung von Strahlung.

Die mikroskopische Struktur von hochentropischen Legierungen ist sehr vielfältig und veränderbar: Dabei beeinflussen die lokale Anordnung der Elemente und verschiedene Sekundärphasen die makroskopischen Eigenschaften wie Härte, Korrosionsbeständigkeit und auch Magnetismus. Die sogenannte Cantor-Legierung aus Chrom, Mangan, Eisen, Kobalt und Nickel in einem äquimolaren Verhältnis gilt als geeignetes Modellsystem für die gesamte Klasse dieser Werkstoffe.

Wo sitzen welche Elemente?

Wissenschaftlerinnen und Wissenschaftler der Bundesanstalt für Materialforschung (BAM, Berlin), der Universität von Lettland in Riga, der Ruhr-Universität Bochum und des HZB haben nun die lokale Struktur dieses Modellsystems genauer untersucht. Mit Röntgenabsorptionsspektroskopie (EXAFS) an BESSY II kombiniert mit statistischen Berechnungen und der Reverse-Monte-Carlo-Methode konnten sie jedes einzelne Element und dessen Verschiebungen von den idealen Gitterpositionen für dieses System nahezu unverfälscht verfolgen.

Besonderheiten von Chrom

Auf diese Weise deckten sie Besonderheiten in der lokalen Umgebung jedes Elements auf: Obwohl alle fünf Elemente der Legierung an den Knotenpunkten des flächenzentrierten kubischen Gitters verteilt sind und sehr enge statistisch gemittelte interatomare Abstände (2,54 - 2,55 Å) zu ihren nächsten Nachbarn haben, zeigten sich größere strukturelle Relaxationen nur bei den Chromatomen. Außerdem fanden sich keine Hinweise auf sekundäre Phasen auf atomarer Ebene. Die makroskopischen magnetischen Eigenschaften, die mit konventioneller Magnetometrie am HZB CoreLab für Quantenmaterialien untersucht wurden, konnten mit den Informationen über das Element Chrom korreliert werden.

"Unsere Ergebnisse beschreiben die Anordnung einzelner Atome sehr präzise und zeigen, wie die komplexe magnetische Ordnung entstehen kann", erklärt HZB-Physikerin Dr. Alevtina Smekhova, die die Experimente am HZB betreut hat.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.