Perowskit/Silizium-Tandemsolarzellen auf dem Weg vom Labor in die Produktion

Die Perowskit Cluster Depositionsanlage „KOALA“ am Helmholtz-Zentrum Berlin ermöglicht Wafer mit Perowskit/Silizium-Tandemsolarzellen im Vakuum herzustellen.

Die Perowskit Cluster Depositionsanlage „KOALA“ am Helmholtz-Zentrum Berlin ermöglicht Wafer mit Perowskit/Silizium-Tandemsolarzellen im Vakuum herzustellen. © HZB

KOALA/KOALA+ - Die am Helmholtz Zentrum Berlin (HZB) errichtete Clusteranlage ermöglicht Wafer mit Perowskit/Silizium-Tandemsolarzellen im Vakuum herzustellen; ausreichend groß, um eine industrielle Produktion abzubilden. Diese weltweit einzigartige Anlage trägt dazu bei, neue industrienahe Prozesse, Materialien und Solarzellen zu entwickeln.

Ziel der Wissenschaftsteams ist es, die Lücke zwischen Forschung und Industrie zu schließen. Dazu haben sie eine neue Anlagentechnologie aufgebaut, um industrieartige Perowskit/Silizium-Tandemsolarzellen mit einem Wirkungsgrad von zunächst 26 Prozent zu entwickeln und herzustellen. Die weltweit einmalige Vakuum-Verdampfungsanlage (technologisch umgesetzt mit den Industriepartnern: Von Ardenne und MBraun/CreaPhys) dampft die aus verschiedenen Materialien bestehende Perowskitabsorberschicht gleichzeitig aus vier oder mehr Quellen homogen und vollflächig auf Siliziumwafer auf. Alle weiteren Kontaktschichten werden in eigenen Prozess-Kammern entwickelt. Das Besondere: Alle Prozesse laufen vollautomatisch und reproduzierbar innerhalb der Anlage - ohne Vakuumbruch - ab. Zudem erlaubt die Clusteranlage, Tandemsolarzellen auf produktionsüblichen Wafergrößen herzustellen und damit die Prozesse vom Labor auf Industriemaßstab zu skalieren.

BR

Das könnte Sie auch interessieren

  • Europäische Pilotlinie für innovative Tandem-Solarzellen
    Nachricht
    23.11.2022
    Europäische Pilotlinie für innovative Tandem-Solarzellen
    PEPPERONI ist ein vierjähriges Forschungs- und Innovationsprojekt, das im Rahmen von Horizon Europe kofinanziert und gemeinsam vom Helmholtz-Zentrum Berlin und Qcells koordiniert wird. Das Projekt wird dazu beitragen, die Markteinführung und Massenproduktion von Perowskit/Silizium-Tandem-Photovoltaik-Technologien voranzubringen.

  • Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Science Highlight
    22.11.2022
    Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.
  • Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Science Highlight
    17.11.2022
    Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Photoelektroden auf der Basis von BiVO4 gelten als Top-Kandidaten für die solare Wasserstofferzeugung. Doch was passiert eigentlich, wenn sie mit Wassermolekülen in Kontakt kommen? Eine Studie im Journal of the American Chemical Society hat diese entscheidende Frage nun teilweise beantwortet: Überschüssige Elektronen aus dotierten Fremdelementen oder Defekten fördern die Dissoziation von Wasser, was wiederum sogenannte Polaronen an der Oberfläche stabilisiert. Dies zeigen Daten aus Experimenten eines HZB-Teams an der Advanced Light Source des Lawrence Berkeley National Laboratory. Die Ergebnisse könnten dazu beitragen, bessere Photoanoden für die grüne Wasserstoffproduktion zu entwickeln.