Spintronics: Giant Rashba semiconductors show unconventional dynamics with potential applications

Left: Electronic structure of GeTe taken with 11 eV photons at BESSY-II, showing the band dispersions of bulk (BS) and surface Rashba states (SS1, SS2) in equilibrium. Middle: Zoom-in on the region of the Rashba states measured with fs-laser 6 eV photons. Right: Corresponding out-of-equilibrium dispersions following excitation by the pump pulse.

Left: Electronic structure of GeTe taken with 11 eV photons at BESSY-II, showing the band dispersions of bulk (BS) and surface Rashba states (SS1, SS2) in equilibrium. Middle: Zoom-in on the region of the Rashba states measured with fs-laser 6 eV photons. Right: Corresponding out-of-equilibrium dispersions following excitation by the pump pulse.

Germanium telluride is a strong candidate for use in functional spintronic devices due to its giant Rashba-effect. Now, scientists at HZB have discovered another intriguing phenomenon in GeTe by studying the electronic response to thermal excitation of the samples. To their surprise, the subsequent relaxation proceeded fundamentally different to that of conventional semimetals. By delicately controlling the fine details of the underlying electronic structure, new functionalities of this class of materials could be conceived. 

 

In recent decades, the complexity and functionality of silicon-based technologies has increased exponentially, commensurate with the ever-growing demand for smaller, more capable devices. However, the silicon age is coming to an end.  With increasing miniaturisation, undesirable quantum effects and thermal losses are becoming an ever-greater obstacle. Further progress requires new materials that harness quantum effects rather than avoid them. Spintronic devices, which use spins of electrons rather than their charge, promise more energy efficient devices with significantly enhanced switching times and with entirely new functionalities.

Spintronic devices are coming

Candidates for spintronic devices are semiconductor materials wherein the spins are coupled with the orbital motion of the electrons. This so-called Rashba effect occurs in a number of non-magnetic semiconductors and semi-metallic compounds and allows, among other things, to manipulate the spins in the material by an electric field.

First study in a non equilibrium state

Germanium telluride hosts one of the largest Rashba effects of all semiconducting systems. Until now, however, germanium telluride has only been studied in thermal equilibrium. Now, for the first time, a team led by HZB physicist Jaime-Sanchez-Barriga has specifically accessed a non-equilibrium state in GeTe samples at BESSY II and investigated in detail how equilibrium is restored in the material on ultrafast (<10-12 seconds) timescales. In the process, the physicists encountered a new and unexpected phenomenon.

First, the sample was excited with an infrared pulse and then measured with high time resolution using angle-resolved photoemission spectroscopy (tr-ARPES). "For the first time, we were able to observe and characterise all phases of excitation, thermalisation and relaxation on ultrashort time scales," says Sánchez-Barriga. The most important result: "The data show that the thermal equilibrium between the system of electrons and the crystal lattice is restored in a highly unconventional and counterintuitive way", explains one of the lead authors, Oliver Clark.

Equilibrium restored: the cooler, the faster

In simple metallic systems, thermal equilibrium is established primarily through the interaction between electrons with each other and between electrons and the lattice vibrations in the crystal (phonons). This process slows down steadily with lower temperatures. In germanium telluride, however, the researchers observed an opposite behaviour: The lower the lattice temperature of the sample, the faster the thermal equilibrium is established after excitation with the heat pulse.  "That was very surprising," says Sánchez-Barriga. With theoretical calculations within the framework of the Boltzmann approach carried out by collaborators at Nanyang Technological University, they were able to interpret the underlying microscopic processes and distinguish three different thermalisation processes: Interactions between electrons within the same band, in different bands and electrons with phonons.

Future applications

It seems, that the interaction between electrons dominates the dynamics and becomes much faster with decreasing lattice temperature. “This can be explained by the influence of the Rashba splitting on the strength of the fundamental electronic interactions. This behaviour is applicable to all Rashba semiconductors," says Sánchez-Barriga: "The present results are important for future applications of Rashba semiconductors and their excitations in ultrafast spintronics."

arö

  • Copy link

You might also be interested in

  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.
  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).