Environmental impact of perovskite-on-silicon solar PV modules lower than silicon alone

Oxford PV provided the perovskite-on-silicon module and process data for the study from its volume manufacturing line in Germany.

Oxford PV provided the perovskite-on-silicon module and process data for the study from its volume manufacturing line in Germany. © Oxford PV

Solar photovoltaics is a reliable and sustainable way to generate energy. A study has evaluated for the first time the lifecycle environmental impact of industrially produced perovskite-on-silicon tandem solar modules, provided by Oxford PV. The conclusion: these innovative tandem solar modules are even more environmentally friendly than conventional silicon heterojunction modules over their lifetimes. The study has now been published by the peer reviewed journal Sustainable Energy & Fuels.

Solar photovoltaics (PV) has a crucial role in decarbonising homes, businesses, and industries. It is increasingly being adopted as a cost-effective, reliable and sustainable energy generation solution. Global installed solar PV capacity has risen from 2 GW in 2002 to more than 1 TW (1000 GW) in 2022, and it is expected to continue to increase substantially over the next decades as countries aim to meet their climate goals and energy security needs.

Perovskite-on-silicon solar cell technology generates more electricity than standard silicon technology and holds significant promise to accelerate solar deployment around the world. The technology is based on a tandem system where a perovskite cell is deposited on top of a silicon cell, maximising the power generated from the combined cell. This tandem technology has broken world records for solar conversion efficiency, which now has reached above 31%.

Understanding the environmental impact of solar PV modules across their entire lifecycle is essential for the design of more sustainable solar energy systems. However, lifecycle assessment on perovskite-on-silicon PV modules have so far relied heavily on data from laboratory and test facilities rather than manufacturers. Now, in a paper published in Sustainable Energy & Fuels, for the first time researchers have assessed the environmental performance of industrially produced perovskite-on-silicon PV modules.

“We have found that perovskite-on-silicon PV modules are more environmentally advantageous than conventional silicon heterojunction modules over a 25-year lifetime,” says Bernd Stannowski from Helmholtz-Zentrum Berlin, a co-author of the study.

The researchers conducted a comprehensive lifecycle assessment of a perovskite-on-silicon module across a number of categories including global warming potential, water consumption, human and marine toxicity, and metals usage. They assessed the materials and energy input for a module’s ‘cradle to gate’ lifecycle, covering all materials and energy input for wafer production, manufacture of the perovskite cell, and module production.

The researchers then weighed up the environmental impact of the tandem module against the electricity generated over its lifetime.

“We found that the perovskite-on-silicon module has 6% to 18% less environmental impact than a silicon module, when we consider the additional energy generated over the tandem module’s 25-year lifetime,” says Martin Roffeis, co-author from The Technical University of Berlin.

The tandem module used in the study would generate the same amount of electricity in 22 years as the referenced silicon heterojunction module over 25 years.

“The higher power conversion efficiency of the perovskite-on-silicon tandem module compensates for its environmental impact due to the additional perovskite material and processes,” notes Jan-Christoph Goldschmidt, co-author who carried out the study while at the Fraunhofer Institute for Solar Energy Systems, and who is now at The Philipps University of Marburg.

The study also finds that the environmental performance of a perovskite-on-silicon module is largely influenced by energy consumed during the production of silicon wafers.

Oxford PV provided the perovskite-on-silicon module and process data for the study from its volume manufacturing line in Germany.

“The sustainability of solar materials and supply chains is growing in importance as the world deploys solar at the multi-terawatt level,” says Laura Miranda Pérez, Head of Materials Research at Oxford PV. “We hope our contribution will help industry and the wider scientific community to improve the design, production, and end-of-life management of tandem technologies, supporting their rollout.”

OxfordPV / red.

  • Copy link

You might also be interested in

  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.