Third-highest oxidation state secures rhodium a place on the podium

For the first time, a team has detected rhodium in the +7 oxidation state, the third highest oxidation state experimentally among all elements in the periodic table.

For the first time, a team has detected rhodium in the +7 oxidation state, the third highest oxidation state experimentally among all elements in the periodic table. © https://doi.org/10.1002/anie.202207688

Oxidation states of transition metals describe how many electrons of an element are already engaged in bonding, and how many are still available for further reactions. Scientists from Berlin and Freiburg have now discovered the highest oxidation state of rhodium, indicating that rhodium can involve more of its valence electrons in chemical bonding than previously thought. This finding might be relevant for the understanding of catalytic reactions involving highly-oxidized rhodium. The result was recognized as a „very important paper“ in Angewandte Chemie.

Transition metals in high or unusual oxidation states might play an important role as catalysts or reaction intermediates in chemical reactions. Because transition metals are already well characterized in most cases, the discovery of a new oxidation state of rhodium came as a real surprise. The identification of rhodium(VII) was made possible by PhD student Mayara da Silva Santos and co-workers, who were able to isolate the species from any reactant in a low-temperature ion trap, and perform x-ray absorption spectroscopy for its characterization. 

BESSY II was essential for the discovery

These kinds of experiments are highly demanding, and can, at present, only be carried out at BESSY II. „The combination of advanced sample preparation, low-temperature ion trapping, and x-ray spectroscopy is unique. Because these essential tools can even be applied to more complex systems, we anticipate further insight into exotic transition metal oxides“, says Vicente Zamudio-Bayer, head of the ion trap group at beamline UE52-PGM, who develops and operates the ion trap endstation at BESSY II. „What was important for us was that our surprising experimental findings could be substantiated by Sebastian Riedel‘s group at FU Berlin, who performed state-of-the-art calculations on the species in question“, explains Zamudio-Bayer. “Even rhodium in oxidation state +6 is very rare, so we had to be extremely careful about +7. New oxidation states are not discovered every day”, says Mayara da Silva Santos.

Catalytic relevance of a potential reaction intermediate

“This is the third-highest oxidation state of all elements. The fact that rhodium(VII) exists, but was unknown, could imply that it might have been overlooked when analyzing pathways of chemical reactions”, Zamudio-Bayer points out.

Possible stabilization for further use

The discovery of rhodium(VII) was made for gas-phase species, but a stabilization of the trioxidorhodium cation by weakly coordinating anions seems possible, based on comparison with other known compounds . This could open prospects for further characterization or applications. “Our rhodium(VII) species is highly reactive, but understanding these seemingly exotic species could lead to improved materials in the future,” Mayara da Silva Santos adds.

Tobias Lau

  • Copy link

You might also be interested in

  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.