Young investigator research group on electrocatalysis at HZB
Dr. Michelle Browne (here at her graduation ceremony in Dublin) starts now a Young Investigator Group at HZB. © privat
Dr. Michelle Browne establishes her own young investigator group at the HZB . Starting in August, the group is co-funded by the Helmholtz Association for the next five years. The electrochemist from Ireland concentrates on electrolytically active novel material systems and wants to develop next-generation electrocatalysts, for example hydrogen production. At HZB she will find the perfect environment to conduct her research.
Michelle Browne received her PhD in 2016 from the University of Dublin, Trinity College Dublin (TCD), Ireland. She held research fellow positions at universities in Belfast, Prague, and Dublin. She has received prestigious fellowships and awards, for example the Marie Skłodowska-Curie Individual Fellowship, L’Oreal UNESCO Rising Talent UK & Ireland Fellowship and the Clara Immerwahr Award.
Her research focuses on the synthesis of novel catalytically active materials such as transition metal oxides and MXenes. She aims to characterise and optimise these material systems in order to develop next-generation electrolyzer materials that can also be upscaled for industrial use, in order to produce green hydrogen.
Electrocatalysis: Synthesis to Devices
Michelle Browne's research project fits perfectly with the research projects already underway at the Institute for Solar Fuels and within CatLab. "At HZB, I have a wide variety of investigation methods at my disposal, from scanning electron microscopy to the various instruments at BESSY II, which also allow operando analyses," she says.
Michelle Browne's affiliation with the Technische Universität Berlin in the Institute of Chemistry is planned. Starting in the fall, Browne will recruit postdocs and PhD students to join her team.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23928;sprache=en
- Copy link
-
How carbonates influence CO2-to-fuel conversion
Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO
2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO
2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.
-
Peat as a sustainable precursor for fuel cell catalyst materials
Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
-
Helmholtz Investigator Group on magnons
Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.