Neue Nachwuchsgruppe zur Elektrokatalyse am HZB
Dr. Michelle Browne (hier bei der Graduiertenfeier in Dublin) baut nun am HZB eine Nachwuchsgruppe auf. © privat
Dr. Michelle Browne baut ab August am HZB ihre eigene Nachwuchsgruppe auf, die von der Helmholtz-Gemeinschaft für die kommenden fünf Jahre mitfinanziert wird. Die Elektrochemikerin aus Irland forscht an elektrolytisch aktiven neuartigen Materialsystemen und will Elektrokatalyseure der nächsten Generation entwickeln, zum Beispiel für die Wasserstoffproduktion. Damit findet sie am HZB eine passende Umgebung für ihr Forschungsthema.
Michelle Browne hat 2016 an der University of Dublin, Trinity College Dublin (TCD), Irland, promoviert und im Anschluss an Universitäten in Belfast, Prag sowie Dublin geforscht. Sie erhielt renommierte Stipendien und Preise, zum Beispiel die Marie Skłodowska-Curie Individual Fellowship, die L’Oréal UNESCO Rising Talent UK & Ireland Fellowship 2021 und den Clara Immerwahr Award.
Im Zentrum ihrer Forschung steht die Synthese von neuartigen katalytisch aktiven Materialien wie den Übergangsmetalloxiden und den MXenen. Diese Materialsysteme will sie charakterisieren und gezielt optimieren, um Elektrolyseure der nächsten Generation zu entwickeln, zum Beispiel, um mit Sonnenlicht grünen Wasserstoff zu produzieren. Diese Elektrolyseure sollen außerdem aufskalierbar und industriell nutzbar sein.
Elektrokatalyse: Von der Synthese zum Bauteil
Das Forschungsvorhaben von Michelle Browne passt hervorragend zur Forschung am Institut für Solare Brennstoffe und im Rahmen von CatLab. „Am HZB stehen mir vielfältigste Untersuchungsmethoden zur Verfügung, von der Rasterelektronenmikroskopie bis zu den unterschiedlichen Instrumenten an BESSY II, die auch operando-Analysen ermöglichen“, sagt Michelle Browne. Eine Anbindung von Michelle Browne an der Technische Universität Berlin im Institut für Chemie ist vorgesehen. Ab Herbst stellt Browne Postdocs und Promovierende für ihr Team ein.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23928;sprache=enA
- Link kopieren
-
Berliner Wissenschaftspreis geht an Philipp Adelhelm
Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet. Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
-
Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.
-
Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.