Young investigator research group on electrocatalysis at HZB

Dr. Michelle Browne (here at her graduation ceremony in Dublin) starts now a Young Investigator Group at HZB.

Dr. Michelle Browne (here at her graduation ceremony in Dublin) starts now a Young Investigator Group at HZB. © privat

Dr. Michelle Browne establishes her own young investigator group at the HZB . Starting in August, the group is co-funded by the Helmholtz Association for the next five years. The electrochemist from Ireland concentrates on electrolytically active novel material systems and wants to develop next-generation electrocatalysts, for example hydrogen production. At HZB she will find the perfect environment to conduct her research.

Michelle Browne received her PhD in 2016 from the University of Dublin, Trinity College Dublin (TCD), Ireland. She held research fellow positions at universities in Belfast, Prague, and Dublin. She has received prestigious fellowships and awards, for example the Marie Skłodowska-Curie Individual Fellowship, L’Oreal UNESCO Rising Talent UK & Ireland Fellowship and the Clara Immerwahr Award.

Her research focuses on the synthesis of novel catalytically active materials such as transition metal oxides and MXenes. She aims to characterise and optimise these material systems in order to develop next-generation electrolyzer materials that can also be upscaled for industrial use, in order to produce green hydrogen.

Electrocatalysis: Synthesis to Devices

Michelle Browne's research project fits perfectly with the research projects already underway at the Institute for Solar Fuels and within CatLab. "At HZB, I have a wide variety of investigation methods at my disposal, from scanning electron microscopy to the various instruments at BESSY II, which also allow operando analyses," she says.

Michelle Browne's affiliation with the Technische Universität Berlin in the Institute of Chemistry is planned. Starting in the fall, Browne will recruit postdocs and PhD students to join her team.

 

arö

You might also be interested in

  • European pilot line for innovative photovoltaic technology based on tandem solar cells
    News
    23.11.2022
    European pilot line for innovative photovoltaic technology based on tandem solar cells
    PEPPERONI, a four-year Research and Innovation project co-funded under Horizon Europe and jointly coordinated by Helmholtz-Zentrum Berlin and Qcells, will support Europe in reaching its renewable energy target of climate neutrality by 2050. The project will help advance perovskite/silicon tandem photovoltaics (PV) technology’s journey towards market introduction and mass manufacturing.
  • How photoelectrodes change in contact with water
    Science Highlight
    17.11.2022
    How photoelectrodes change in contact with water
    Photoelectrodes based on BiVO4 are considered top candidates for solar hydrogen production. But what exactly happens when they come into contact with water molecules? A study in the Journal of the American Chemical Society has now partially answered this crucial question:  Excess electrons from dopants or defects aid the dissociation of water which in turn stabilizes so-called polarons at the surface. This is shown by data from experiments conducted at the Advanced Light Source at Lawrence Berkeley National Laboratory. These insights might foster a knowledge-based design of better photoanodes for green hydrogen production.
  • Photocatalysis: Processes in charge separation recorded experimentally
    Science Highlight
    08.11.2022
    Photocatalysis: Processes in charge separation recorded experimentally
    Certain metal oxides are considered good candidates for photocatalysts to produce green hydrogen with sunlight. A Chinese team has now published exciting results on copper(I) oxide particles in Nature, to which a method developed at HZB contributed significantly. Transient surface photovoltage spectroscopy showed that positive charge carriers on surfaces are trapped by defects in the course of microseconds. The results provide clues to increase the efficiency of photocatalysts.