Humboldt Fellow Alexander Gray comes to HZB

Alexander Gray (here in his lab at Temple University, Philadelphia, USA) will strengthen his collaboration with the team of Florian Kronast at BESSY II.

Alexander Gray (here in his lab at Temple University, Philadelphia, USA) will strengthen his collaboration with the team of Florian Kronast at BESSY II. © Privat

Alexander Gray from Temple University in Philadelphia, USA, is working with HZB physicist Florian Kronast to investigate novel 2D quantum materials at BESSY II. With the fellowship from the Alexander von Humboldt Foundation, he can now deepen this cooperation. At BESSY II, he wants to further develop depth-resolved X-ray microscopic and spectroscopic methods in order to investigate 2D quantum materials and devices for new information technologies even more thoroughly.

 

Topological insulators and Weyl semimetals are among the most exciting classes of materials for quantum devices. They are characterised by the fact that they have different electronic and magnetic  properties at the surfaces and interfaces than in the volume.

Alexander Gray is a well-known expert in this field and frequently comes to BESSY II for short measurement periods, where he cooperates with Florian Kronast. As a Fellow of the Alexander von Humboldt Foundation, the American physicist can now finance regular guest stays at HZB with Florian Kronast's team and at Forschungszentrum Jülich with Claus Schneider's team. "The Humboldt Fellowship gives us more time, so we can investigate and discuss in more detail how the interplay between surface, interface and bulk properties in quantum materials leads to novel phenomena that enable device applications," he says.  

Gray leads a team at Temple University in Philadelphia and also plans to send his students to BESSY II. "We want to develop new techniques to study the electronic and magnetic properties of 2D quantum materials and quantum devices in more detail," he outlines his goals. At BESSY II, Gray will primarily develop depth-resolved standing-wave photoemission microscopy further for this purpose. Kronast, Gray, and his former doctoral advisor Chuck Fadley have already combined this method with excitation by standing X-ray waves to enable depth resolution (SW-PEEM).

From mid-August, Alexander Gray is planning his first stay at BESSY II. He is not only looking forward to the measurements and many discussions, but also to the typical Berlin atmosphere: "The people are really open and friendly, and I have never experienced the famous "Berlin snout". I think if I do one day, I might deserve it." With this attitude, full of humor, his stay in Berlin will be a huge success in every aspect.

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.