Professur an der Universität Augsburg für Felix Büttner

Prof. Dr. Felix Büttner ist einem Ruf an die Universität Augsburg gefolgt, am HZB leitet er nun eine gemeinsame Forschungsgruppe.

Prof. Dr. Felix Büttner ist einem Ruf an die Universität Augsburg gefolgt, am HZB leitet er nun eine gemeinsame Forschungsgruppe. © Uni Augsburg

Felix Büttner hat am HZB eine Nachwuchsforschungsgruppe geleitet. Nun ist er einem Ruf an die Universität Augsburg gefolgt. Im Rahmen einer gemeinsamen Forschungsgruppe wird er die Untersuchungen an magnetischen Skyrmionen am HZB fortsetzen.

 

Felix Büttner hat seit Anfang 2020 eine Nachwuchsforschungsgruppe am HZB geleitet, die durch den Young Investigator Grant der Helmholtz-Gemeinschaft gefördert wurde. Für seine bahnbrechenden Leistungen auf dem Gebiet magnetischer Skyrmionen hat ihn die Deutsche Physikalische Gesellschaft vor kurzem mit dem Walter-Schottky-Preis ausgezeichnet. Zum Juli wechselte Büttner an die Universität Augsburg. Dort ist er nun Professor am Zentrum für Elektronische Korrelation und Magnetismus (EKM) am Institut für Physik.

Felix Büttner hat in Göttingen studiert und wurde 2013 für seine Arbeit an der Schnittstelle von Magnetismus und Röntgenphysik promoviert. Nach einer Station in der Industrie bei der Daimler AG arbeitete er 2015-2020 als Postdoktorand am Massachusetts Institute of Technology.

Prof. Dr. Büttner untersucht Nanotexturen in magnetischen Dünnschichtmaterialien und treibt die Entwicklung von ultrahochauflösenden Röntgenmikroskopietechniken voran. Dabei geht es darum, die teilchenartige Dynamik solcher topologischen Texturen zu verstehen und deren Anwendung in der Informationstechnik vorzubereiten.

Im Rahmen einer Kooperationsvereinbarung zwischen der Universität Augsburg und dem HZB arbeitet Büttner künftig einen Tag pro Woche am HZB, wo er Labore in Wannsee betreibt und Messungen an BESSY II durchführt. Seine Forschungsgruppe bleibt in voller Größe bestehen.

red./arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.