Rhomboedrischer Graphit als Modell für Quantenmagnetismus

Rhomboedrischer Graphit besteht aus leicht gegeneinander verschobenen Graphen-Schichten. 

Rhomboedrischer Graphit besteht aus leicht gegeneinander verschobenen Graphen-Schichten.  © 10.1126/sciadv.abo6879

<p class="Default">Auf der Oberfl&auml;che von rhomboedrischem Graphit k&ouml;nnen sich Elektronen in 2D frei bewegen. Visualisiert wird dies hier durch die roten Kugeln um die Kohlenstoff-Atome der obersten Graphen-Lage.

Auf der Oberfläche von rhomboedrischem Graphit können sich Elektronen in 2D frei bewegen. Visualisiert wird dies hier durch die roten Kugeln um die Kohlenstoff-Atome der obersten Graphen-Lage.

Graphen ist ein äußerst spannendes Material. Nun zeigt eine Graphen-Variante ein weiteres Talent: Rhomboedrischer Graphit aus mehreren, leicht gegeneinander versetzten Schichten könnte die verborgene Physik in Quantenmagneten aufklären.

Graphen-Materialien bestehen nur aus Kohlenstoffatomen, die Grundform ist eine einlagige Bienenwabenstruktur. Aber es gibt einige Varianten mit erstaunlich vielseitigen Eigenschaften. So können beispielsweise Stapel von Graphenschichten* eine Vielzahl von Quasiteilchen und Vielteilchenphänomenen beherbergen: Von Dirac-Fermionen in Einzelschichten bis hin zu exotischer Supraleitfähigkeit in verdrillten Doppelschichten.

Freie Ladungsträger an der Oberfläche

In rhomboedrischem Graphit (RG) sind die wabenförmigen Schichten mit einem bestimmten Versatz übereinander gestapelt. Dies führt zu einer besonderen elektronischen Struktur mit sehr flachen Bändern an der Oberfläche. Wie in einem topologischen Isolator bewegen sich die Ladungsträger nur an der Oberfläche frei.

Letztes Jahr wurde gezeigt, dass Dreischichten aus RG auch Ferromagnetismus und unkonventionelle Supraleitung aufweisen. Und: Die Stärke der Wechselwirkungen nimmt mit der Anzahl der Schichten zu.

Experimentelle und theoretische Analysen

Ein Team vom Zentrum für Energieforschung, Budapest, Ungarn und am HZB hat nun erstmals die Oberfläche von mehrschichtigen RG-Proben unter einem Rastertunnelmikroskop untersucht. Sie konnten die Bandstruktur und die elektronischen Eigenschaften präzise abbilden und entdeckten unerwartet reiche Vielteilchen-Grundzustände. Zudem arbeiteten sie mit verschiedenen Modellen der Quantenphysik, um verborgene Prozesse und Wechselwirkungen in den Proben zu verstehen. 

Bezug zu Quantenmagnetismus

"Das Interessante an rhomboedrischem Graphit ist, dass dieses Material auch sogenannte Spin-Kanten-Zustände aufweist, die in Quantenmagneten vorkommen. Die Arbeit verbindet somit zwei wichtige Bereiche der kondensierten Materie: Graphen-basierte Systeme und Quantenmagnete", sagt Dr. Imre Hagymási, Erstautor der Arbeit, die jetzt in Science Advances erschienen ist.

Ein flexibles Modellsystem

Die Studie bietet neue Einblicke in das Zusammenspiel von Topologie und Vielteilchenphysik und damit die Chance, die Physik in Quantenmagneten zu erhellen. Derzeit sind selbst einfache Quantenmagnete noch nicht vollständig verstanden. Quantenmagnete spielen aber auch bei hochaktuellen Themen wie den Hochtemperatur-Kuprat-Supraleitern eine Rolle. RG bietet eine alternative Plattform für die Untersuchung solcher korrelierter Phänomene. Eine Plattform, die durch elektrische Felder, Dehnung usw. einstellbar ist und im Vergleich zu anderen korrelierten Materialien eine sehr einfache Kristallstruktur aufweist. "Diese Ergebnisse sind wirklich hilfreich für das gesamte Forschungsgebiet", sagt Hagymási.

*Anmerkung:  Graphen besteht eigentlich nur aus einer einzigen Lage von vernetzten Kohlenstoff-Atomen , mehrere Lagen solcher Graphen-Schichten werden als Graphit bezeichnet.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.