Rhombohedral graphite as a model for quantum magnetism

Rhombohedral graphite (right) consists of staggered graphene layers.

Rhombohedral graphite (right) consists of staggered graphene layers. © 10.1126/sciadv.abo6879

<p class="Default">The surface state of RG is visualized as red spheres centered on the carbon atoms in the top graphene layer. The size of the spheres is proportional to the density of electrons on the carbon atoms. It can also be called a 2D electron system.

The surface state of RG is visualized as red spheres centered on the carbon atoms in the top graphene layer. The size of the spheres is proportional to the density of electrons on the carbon atoms. It can also be called a 2D electron system.

Graphene is an extremely exciting material. Now a graphene variant shows another talent: rhombohedral graphite made of several layers slightly offset from each other could enlighten the hidden physics in quantum magnets.

Graphene materials are made of carbon atoms only, the basic shape is a honeycomb structure. But there are many variants with amazingly versatile properties. For example, stacks of graphene layers* can host a wide variety of quasiparticles and many-body phenomena: From Dirac fermions in single layers to exotic superconductivity in twisted double layers.

A stack of Honeycombs

In rhombohedral graphite (RG), the honeycomb layers are stacked on top of each other, with a specific shift or offset. This leads to a special electronic structure with very flat bands on the surface. Like in a topological insulator, charge carriers move freely at the surface only. Last year, it was shown that trilayers of RG also harbour ferromagnetism and unconventional superconductivity. And: The strength of the interactions increases with the number of layers.

Combination of experimental and theoretical results

A team from the Centre of Energy Research (Topology in Nanostructures, Momentum research group), Budapest, Hungary and at HZB has now examined the surface of multilayer RG samples under a scanning tunnelling microscope for the first time. They could precisely map the band structure and electronic properties and discovered unexpectedly rich many-body ground states. They also worked on various models of quantum physics in order to understand hidden processes and interactions in the samples. 

Link between graphene-systems and quantum magnets

"The interesting thing about rhombohedral graphite is that this material also has so-called spin edge states, which occur in quantum magnets. The work thus connects two major areas of condensed matter: graphene-based systems and quantum magnets," says Dr Imre Hagymási, first author of the paper, which has now appeared in Science Advances.

Rhombohedrical graphene as a tunable platform

The study offers new insights into the interplay between topology and many-body physics and thus the chance to shed light on the physics in quantum magnets. At present, even simple quantum magnets are not fully understood. Yet quantum magnets also play a role in highly topical issues such as high-temperature cuprate superconductors. RG offers an alternative platform for the study of such correlated phenomena. A platform that is tunable by electric fields, strain, etc. and has a very simple crystal structure compared to other correlated materials. "These results are really helpful for the whole research field," says Hagymási.

*Note: Graphene is strictly one layer whereas the arrangement of graphene layers can be called graphite.

arö

  • Copy link

You might also be interested in

  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.