Dynamik in 1D-Spinketten neu aufgeklärt

Die Daten aus der Neutronenstreuung (links) geben Auskunft über absorbierte Energien im reziproken Raum. Mit der neuen Auswertung war es möglich, Aussagen über neue magnetische Zustände und deren zeitliche Entwicklung im Realraum zu erhalten (rechts). Die Farben Blau und Rot kennzeichnen die beiden entgegengesetzten Spinrichtungen.

Die Daten aus der Neutronenstreuung (links) geben Auskunft über absorbierte Energien im reziproken Raum. Mit der neuen Auswertung war es möglich, Aussagen über neue magnetische Zustände und deren zeitliche Entwicklung im Realraum zu erhalten (rechts). Die Farben Blau und Rot kennzeichnen die beiden entgegengesetzten Spinrichtungen. © HZB

Die Neutronenstreuung gilt als die Methode der Wahl, um magnetische Strukturen und Anregungen in Quantenmaterialien zu untersuchen. Nun hat die Auswertung von Messdaten aus den 2000er Jahren mit neuen Methoden erstmals wesentlich tiefere Einblicke in ein Modellsystem - die 1D-Heisenberg-Spinketten - geliefert. Damit steht ein neuer Werkzeugkasten für die Erforschung zukünftiger Quantenmaterialien zur Verfügung.

Kalium-Kupfer-Fluorid KCuF3 gilt als das einfachste Modellmaterial für eine sogenannte Heisenberg-Quantenspinkette: Die Spins wechselwirken mit ihren Nachbarn antiferromagnetisch entlang einer einzigen Richtung (eindimensional) und unterliegen den Gesetzen der Quantenphysik.

"Wir haben die Messungen an diesem einfachen Modellsystem an der Spallationsneutronenquelle ISIS schon vor einiger Zeit durchgeführt, als ich noch Postdoc war", sagt Prof. Bella Lake, die das HZB-Institut Quantenphänomene in neuen Materialien leitet. "Unsere Ergebnisse, die wir 2005, 2013 und erneut 2021 veröffentlicht haben, haben wir  jeweils mit neuen Theorien verglichen", sagt sie. Mit neuen und erweiterten Methoden ist es einem Team um Prof. Alan Tennant und Dr. Allen Scheie nun gelungen, deutlich tiefere Einblicke in die Wechselwirkungen zwischen den Spins und deren räumliche und zeitliche Entwicklung zu gewinnen.

Mitreissende Spin-Dynamik

"Bei der Neutronenstreuung stößt man einen Spin so an, dass er umkippt. Dadurch entsteht eine Dynamik, ähnlich wie ein Kielwasser, wenn ein Schiff durch das Wasser fährt, das seine Nachbarn und deren Nachbarn beeinflussen kann", erklärt Tennant.

"Neutronenstreuungsdaten werden als Funktion der Energie und des Wellenvektors gemessen", sagt Scheie. "Unser Durchbruch bestand darin, die räumliche und zeitliche Entwicklung der Spins mit mathematischen Methoden wie der Back-Fourier-Transformation abzubilden." In Kombination mit anderen theoretischen Methoden erhielten die Physiker Informationen über die Wechselwirkungen zwischen den Spinzuständen und deren Dauer und Reichweite sowie Einblicke in die sogenannte Quantenkohärenz.

Neuer Werkzeugkasten

Die Arbeit bietet damit einen neuen Werkzeugkasten für die Analyse von Neutronenstreudaten, um das Verständnis von technologisch relevanten Quantenmaterialien zu vertiefen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.