Neu am HZB: Tomographie-Labor für die KI-unterstützte Batterieforschung

Röntgen-Tomographie einer Batterie-Kathode, virtuell in ihre Bestandteile zerlegt.

Röntgen-Tomographie einer Batterie-Kathode, virtuell in ihre Bestandteile zerlegt. © M. Osenberg, I. Manke/ HZB / Binder/ KIT

Am HZB wird ein Labor für automatisierte Röntgen-Tomographie an Festkörper-Batterien eingerichtet. Das Besondere: 3D-Daten während der Lade/Entladeprozesse (operando) können mit Methoden der Künstlichen Intelligenz (KI) rascher und vielseitiger ausgewertet werden. Das Bundesministerium für Forschung und Bildung fördert das Projekt „TomoFestBattLab“ mit 1,86 Millionen Euro.

 

Röntgen-Tomographie ermöglicht es, direkt in eine Batterie hineinzuschauen und ihr während des Entladens und Beladens zuzuschauen. „Wenn etwa das Lithium beim Laden und Entladen zwischen Anode und Kathode hin und her wandert, dehnt sich möglicherweise das Lithium-Speichermaterial aus oder es finden chemische Umwandlungsprozesse statt“, erläutert der Tomographieexperte Dr. Ingo Manke. Die dreidimensionale Abbildung dieser strukturellen Veränderungen kann Schwachstellen hinsichtlich Leistung und Haltbarkeit deutlich machen, zum Beispiel Alterungsprozesse. Die Röntgen-Tomographie kann diese Strukturveränderungen abbilden und ist daher auch in der Batterieforschung - ähnlich wie in der Medizin - zu einer unverzichtbaren Messtechnik geworden.

Das HZB baut nun ein automatisiertes Tomographie-Labor auf, das speziell auf die Bedürfnisse von so genannten Festkörperbatterien ausgerichtet ist. Die Auswertung tomographischer Messungen ist äußerst zeitaufwändig, da die erzeugten Datenmengen sehr groß sind und komplexe 3D-Algorithmen erfordern. Daher sollen große Teile der 3D-Auswertungen mit Hilfe von Verfahren der künstlichen Intelligenz (bzw. des maschinellen Lernens) vollautomatisiert werden. Unterstützt wird dies durch einen speziellen Hochleistungs-Computer, mit dem so genannte „digitale Zwillinge“ der realen Batterien im Computer erzeugt werden können.

Diese Kombination aus Methoden der künstlichen Intelligenz und Tomographie-Messverfahren ist ein innovativer Ansatz mit Pilotfunktion für die Ausstattung zukünftiger Labore. „Das Projekt hilft uns dabei, die Batterieforschung im Hinblick auf die Erfordernisse der Industrie 4.0 zu digitalisieren und neue Wege bei der Entwicklung von Batterien einzuschlagen“, sagt Projektkoordinator Manke.

Das neue Labor wird Arbeitsgruppen an universitären und außeruniversitären Forschungseinrichtungen sowie Industrieunternehmen darin unterstützen, neue Batterietechnologien zu entwickeln und zu verbessern.  

Laufzeit bis Herbst 2024

Das Projekt „Machine Learning unterstütztes automatisiertes Labor für multi-dimensionale Operando Tomographie von Festkörperbatterien unter realen Betriebsbedingungen“ (TomoFestBattLab, FKZ 03XP0462) wird durch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Initiative zum Ausbau der nationalen Forschungsinfrastruktur im Bereich der Batteriematerialien und -technologien (ForBatt) gefördert. Die Förderung läuft vom 01.09.2022 bis 31.08.2024.

 

red.

Das könnte Sie auch interessieren

  • Jetzt bewerben! Helmholtz Visiting Researcher Grant
    Nachricht
    11.01.2023
    Jetzt bewerben! Helmholtz Visiting Researcher Grant
    Promovieren Sie oder sind Sie ein Postdoc? Ihre Forschung hat einen starken Bezug zu (angewandten) Daten- und Informationswissenschaften?

    Dann ist dieses Angebot bestimmt interessant für Sie!

  • Ombudspersonen für gute wissenschaftliche Praxis bestellt
    Nachricht
    09.01.2023
    Ombudspersonen für gute wissenschaftliche Praxis bestellt
    Seit dem 1. Januar 2023 sind für Sie Manfred Weiss, Sebastian Fiechter, Annette Pietsch und Michael Tovar als Ombudspersonen ansprechbar. Sie beraten gerne zu allen Fragen zur guten wissenschaftlichen Praxis am HZB.

  • KI-gestützte Software schafft Durchblick bei komplexen Daten
    Science Highlight
    20.12.2022
    KI-gestützte Software schafft Durchblick bei komplexen Daten
    Experimentelle Daten sind oft nicht nur hochdimensional, sondern auch verrauscht und voller Artefakte. Das erschwert es, die Daten zu interpretieren. Nun hat ein Team am HZB eine Software konzipiert, die mit Hilfe von selbstlernenden neuronalen Netzwerken die Daten smart komprimiert und im nächsten Schritt eine rauscharme Version rekonstruieren kann. Das ermöglicht Einblicke in Zusammenhänge, die sonst nicht erkennbar wären. Die Software wurde jetzt erfolgreich für die Photonendiagnostik beim Freien Elektronenlaser FLASH bei DESY eingesetzt. Sie eignet sich jedoch für ganz unterschiedliche Anwendungen in der Wissenschaft.