Spintronik: Ein neues Werkzeug an BESSY II zur Untersuchung der Chiralität

Das Bild illustriert den Haupteffekt, der mit dem neu entwickelten Instrument ALICE II an BESSY II gemessen wurde: Ein zirkular polarisierter weicher R&ouml;ntgenstrahl wird an einem Kristall gestreut, der eine helikale magnetische Ordnung aufweist. Dies f&uuml;hrt zu zwei Streustrahlen unterschiedlicher Intensit&auml;t.</p> <p>

Das Bild illustriert den Haupteffekt, der mit dem neu entwickelten Instrument ALICE II an BESSY II gemessen wurde: Ein zirkular polarisierter weicher Röntgenstrahl wird an einem Kristall gestreut, der eine helikale magnetische Ordnung aufweist. Dies führt zu zwei Streustrahlen unterschiedlicher Intensität.

© F. Radu/HZB

Informationen über komplexe magnetische Strukturen sind entscheidend für das Verständnis und die Entwicklung spintronischer Materialien. Jetzt steht bei BESSY II ein neues Instrument namens ALICE II zur Verfügung. Es ermöglicht magnetische Röntgenstreuung im reziproken Raum mit Hilfe eines neuen großflächigen Detektors. Ein Team des HZB und der Technischen Universität München hat die Leistungsfähigkeit von ALICE II demonstriert und helikale und konische magnetische Zustände in einem  Einkristall mit Skyrmionen analysiert. Das neue Instrument steht nun auch Messgästen an BESSY II zur Verfügung.

ALICE II wurde von Dr. Florin Radu und der Konstruktionsabteilung am HZB in enger Zusammenarbeit mit Prof. Christian Back von der Technischen Universität München und seiner technischen Unterstützung konzipiert und gebaut. "ALICE II verfügt über eine einzigartige Fähigkeit: Es emöglicht magnetische Röntgenstreuung im reziproken Raum mit einem neuen großflächigen Detektor bis zu den höchsten erlaubten Reflexionswinkeln", erklärt Radu. Um die Leistungsfähigkeit des neuen Instruments zu demonstrieren, untersuchten die Wissenschaftler eine polierte Probe von Cu2OSeO3.

Mott-Isolator untersucht

Cu2OSeO3 ist ein Mott-Isolator mit einer kubischen Kristallstruktur, die jedoch keine Inversionssymmetrie aufweist. Dadurch kommt es zu einer spiralförmigen magnetischen Ordnung: Die magnetischen Spins drehen sich im oder gegen den Uhrzeigersinn in Bezug auf die Ausbreitungsrichtung. Das magnetische Ion ist Kupfer (Cu), und die Chiralität der magnetischen Struktur kann durch äußere Reize nicht umgekehrt werden. Die hohe Probenqualität ist dabei von entscheidender Bedeutung und wurde von Dr. Aisha Aqueel sichergestellt.

Einblicke in Spin-Texturen

Mit zirkular polarisierter Röntgenstrahlung konnte die Gruppe helikale und konische magnetische Modulationen als Satellitenreflexionen beobachten. "Mehr noch: Die Chiralitätsinformation der zugrundeliegenden Spin-Texturen ist als dichroitische Intensität kodiert", betont Radu. Dies zeigt einen neuen Weg, um chirale und polare magnetische Texturen zu untersuchen, und zwar mit höchster räumlicher Auflösung und auf sehr kurzen Zeitskalen, wie sie für Synchrotron-Röntgenexperimente typisch sind.

Hinweis: Das Projekt wurde vom BMBF und HZB gefördert.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.