Batterien ohne kritische Rohstoffe

Mit operando-Methoden lässt sich beobachten, wie sich solvatisierte Ionen in Batterie-Elektroden einlagern. Die Erkenntnisse sind hilfreich, um alternative Batteriekonzepte zu entwickeln.

Mit operando-Methoden lässt sich beobachten, wie sich solvatisierte Ionen in Batterie-Elektroden einlagern. Die Erkenntnisse sind hilfreich, um alternative Batteriekonzepte zu entwickeln. © G. A. Ferrero

Der Markt für wiederaufladbare Batterien wächst schnell, aber die benötigten Rohstoffe sind begrenzt. Eine Alternative könnten zum Beispiel Natrium-Ionen-Batterien sein. Eine gemeinsame Forschergruppe von HZB und Humboldt-Universität zu Berlin hat dafür neue Kombinationen von Elektrolytlösungen und Elektrodenmaterialien untersucht.

"Im Gegensatz zu Lithium-Ionen-Batterien, die auf der Speicherung von Lithium-Ionen in der positiven und negativen Elektrode der Batterie basieren, arbeiten wir mit Natrium-Ionen, wie sie auch in billigem Kochsalz vorkommen. Dazu speichern wir die Natrium-Ionen zusammen mit ihrer Solvathülle, also Lösungsmittelmolekülen aus der Elektrolytlösung, die die beiden Elektroden trennen. Damit lassen sich völlig neue Speicherreaktionen realisieren", erklärt Prof. Philipp Adelhelm, der die Forschungsgruppe "operando battery analysis" leitet, die 2020 gemeinsam von Humboldt-Universität und Helmholtz-Zentrum Berlin gegründet wurde.

Diese Einlagerung von Ionen in Begleitung ihrer Solvatationshülle in einem Kristallgitter bezeichnet man als Ko-Interkalation. Bislang war dieses Konzept auf die negative Elektrode der Natrium-Ionen-Batterie beschränkt. Nun ist es dem Team um Adelhelm gelungen, das Konzept auf die positive Elektrode der Batterie auszuweiten. Dr. Guillermo A. Ferrero, Erstautorin der Veröffentlichung, erklärt: "Mit Titandisulfid und Graphit haben wir zum ersten Mal zwei Materialien kombiniert, die während des Ladens und Entladens der Batterie dasselbe Lösungsmittel aufnehmen und abgeben". Mit Operando-Messungen  am Röntgen-Corelab des HZB (LIMAX 160) ließen sich Veränderungen im Material während des Ladens und Entladens beobachten und der Mechanismus der Ko-Interkalation im Inneren der Batterie analysieren. Mit diesem  Wissen gelang es dem Team, eine Batterie zu realisieren, bei der die Ko-Interkalation von Lösungsmittelmolekülen an beiden Elektroden reversibel ist.

"Wir beginnen gerade erst damit, Ko-Interkalationsbatterien zu verstehen. Es gibt einige Vorteile, die wir uns vorstellen können", erklärt Dr. Katherine A. Mazzio vom HZB: Der Prozess der Ko-Interkalation könnte die Effizienz verbessern, indem er eine bessere Leistung bei niedrigen Temperaturen ermöglicht. Er könnte auch genutzt werden, um alternative Zellkonzepte zu verbessern, wie zum Beispiel die Verwendung mehrwertiger Ionen anstelle der Speicherung von Li+ oder Na+, die besonders empfindlich auf die Solvatationshülle reagieren.

Hinweis: Dieses Projekt wurde vom Europäischen Forschungsrat (ERC) im Rahmen des Forschungs- und Innovationsprogramms Horizon 2020 der Europäischen Union gefördert (Grant Agreement No. [864698], SEED).

HU Berlin/ arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.