BESSY II: Einfluss von Protonen auf Wassermoleküle

An BESSY II konnten die spektralen Fingerabdr&uuml;cke von Wassermolek&uuml;le untersucht werden. Das Ergebnis: die elektronische Struktur der drei innersten Wassermolek&uuml;le in einem H<sub>7</sub>O<sub>3</sub><sup>+</sup>-Komplex wird durch das Proton drastisch ver&auml;ndert. Dar&uuml;ber hinaus ver&auml;ndert sich auch die erste Hydrath&uuml;lle aus f&uuml;nf weiteren Wassermolek&uuml;len, die das Proton &uuml;ber sein langreichweitiges elektrisches Feld wahrnimmt.

An BESSY II konnten die spektralen Fingerabdrücke von Wassermoleküle untersucht werden. Das Ergebnis: die elektronische Struktur der drei innersten Wassermoleküle in einem H7O3+-Komplex wird durch das Proton drastisch verändert. Darüber hinaus verändert sich auch die erste Hydrathülle aus fünf weiteren Wassermolekülen, die das Proton über sein langreichweitiges elektrisches Feld wahrnimmt. © MBI

Wie Wasserstoff-Ionen oder Protonen mit ihrer wässrigen Umgebung wechselwirken, hat große Praxisrelevanz, ob in der Technologie von Brennstoffzellen oder in den Lebenswissenschaften. Nun hat ein großes internationales Konsortium an der Röntgenquelle BESSY II diese Frage experimentell im Detail untersucht und neue Effekte entdeckt. So verändert die Anwesenheit eines Protons die elektronische Struktur der drei innersten Wassermoleküle, wirkt sich aber außerdem auch noch darüber hinaus über ein langreichweitiges Feld auf eine Hydrathülle aus fünf weiteren Wassermolekülen aus.

Überschüssige Protonen in Wasser sind komplexe Quantenobjekte mit starken Wechselwirkungen mit dem dynamischen Wasserstoffbrückenbindungsnetz der Flüssigkeit. Diese Wechselwirkungen sind überraschend schwer zu untersuchen. Dabei spielt die so genannte Protonenhydratisierung eine zentrale Rolle beim Energietransport in Wasserstoffbrennstoffzellen und bei der Signalübertragung in Transmembranproteinen. Während die Geometrien und Stöchiometrien sowohl in Experimenten als auch in der Theorie umfassend untersucht wurden, ist die elektronische Struktur dieser hydratisierten Protonenkomplexe nach wie vor ein Rätsel.

Elektronische Struktur von Protonen in Lösung

Eine große Kooperation aus Gruppen des Max-Born-Instituts, der Universität Hamburg, der Universität Stockholm, der Ben-Gurion-Universität und der Universität Uppsala hat nun neue Erkenntnisse über die elektronische Struktur hydratisierter Protonenkomplexe in Lösung gewonnen.

Wechselwirkungen mit kurzer und längerer Reichweite

Mit Hilfe der neuartigen Flatjet-Technologie führten sie an BESSY II röntgenspektroskopische Messungen durch und kombinierten sie mit Infrarotspektralanalyse und Berechnungen. Dadurch ließen sich zwei wesentliche Effekte unterscheiden: Lokale Orbital-Wechselwirkungen bestimmen die kovalente Bindung zwischen dem Proton und benachbarten Wassermolekülen, während Orbital-Energie-Verschiebungen die Stärke des ausgedehnten elektrischen Feldes des Protons messen. Die Ergebnisse legen eine allgemeine Hierarchie für die Protonenhydratation nahe: Das Proton interagiert mit drei Wassermolekülen und bildet einen H7O3+-Komplex. Die Hydratschale dieses Komplexes wird durch das elektrische Feld der positiven Ladung des Protons beeinflusst.

Mögliche Anwendungen

Die neuen Forschungserkenntnisse haben direkte Auswirkungen auf das Verständnis der Protonenhydratation von Protonen in wässriger Lösung über Protonenkomplexe in Brennstoffzellen bis hin zur Wasserstruktur-Hydratationstaschen von Protonenkanälen in Transmembranproteinen.

Eine längere Meldung dazu können Sie auf der Seite des Max-Born-Instituts lesen>

 

MBI/arö

Das könnte Sie auch interessieren

  • Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Science Highlight
    16.03.2023
    Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.
  • Super-Energiespeicher: Ladungstransport in MXenen untersucht
    Science Highlight
    13.03.2023
    Super-Energiespeicher: Ladungstransport in MXenen untersucht
    MXene können große Mengen elektrischer Energie speichern und lassen sich dabei sehr schnell auf- und entladen. Damit vereinen MXene die Vorteile von Batterien und Superkondensatoren und gelten als spannende neue Materialklasse für die Energiespeicherung: Das Material ist wie eine Art Blätterteig aufgebaut, die MXene-Schichten sind durch dünne Wasserfilme getrennt. Ein Team am HZB hat nun an der Röntgenquelle BESSY II untersucht, wie Protonen in diesen Wasserfilmen wandern und den Ladungstransport ermöglichen. Ihre Ergebnisse sind in der renommierten Fachzeitschrift Nature Communications veröffentlicht und könnten die Optimierung solcher Energiespeichermaterialien beschleunigen.
  • Elektrokatalyse unter dem Rasterkraftmikroskop
    Science Highlight
    09.03.2023
    Elektrokatalyse unter dem Rasterkraftmikroskop
    Eine Weiterentwicklung der Rasterkraftmikroskopie macht es nun möglich, das Höhenprofil nanometerfeiner Strukturen sowie den elektrischen Strom und die Reibungskraft an fest-flüssig Grenzflächen zeitgleich abzubilden. Damit gelang es einem Team am Helmholtz-Zentrum Berlin (HZB) sowie am Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft, elektrokatalytisch aktive Materialien zu analysieren und Einblicke zu gewinnen, die für die Katalysatoroptimierung hilfreich sind. Die Methode eignet sich darüber hinaus auch, um Prozesse an Batterieelektroden, bei der Photokatalyse oder an aktiven Biomaterialien zu untersuchen.