Quantum algorithms save time in the calculation of electron dynamics

The calculations allow the electron densities and the changes after excitation to be determined with high spatial and temporal resolution. Here, the example of the lithium hydride molecule shows the shift of electron density from cyanide (red) to lithium (green) during a laser pulse.

The calculations allow the electron densities and the changes after excitation to be determined with high spatial and temporal resolution. Here, the example of the lithium hydride molecule shows the shift of electron density from cyanide (red) to lithium (green) during a laser pulse. © F. Langkabel / HZB

Quantum computers promise significantly shorter computing times for complex problems. But there are still only a few quantum computers worldwide with a limited number of so-called qubits. However, quantum computer algorithms can already run on conventional servers that simulate a quantum computer. A team at HZB has succeeded to calculate the electron orbitals and their dynamic development on the example of a small molecule after a laser pulse excitation. In principle, the method is also suitable for investigating larger molecules that cannot be calculated using conventional methods.

 

"These quantum computer algorithms were originally developed in a completely different context. We used them here for the first time to calculate electron densities of molecules, in particular also their dynamic evolution after excitation by a light pulse," says Annika Bande, who heads a group on theoretical chemistry at HZB. Together with Fabian Langkabel, who is doing his doctorate with Bande, she has now shown in a study how well this works.

Error-free quantum computer

"We developed an algorithm for a fictitious, completely error-free quantum computer and ran it on a classical server simulating a quantum computer of ten Qbits," says Fabian Langkabel. The scientists limited their study to smaller molecules in order to be able to perform the calculations without a real quantum computer and to compare them with conventional calculations.

Faster computation

Indeed, the quantum algorithms produced the expected results. In contrast to conventional calculations, however, the quantum algorithms are also suitable for calculating significantly larger molecules with future quantum computers: "This has to do with the calculation times. They increase with the number of atoms that make up the molecule," says Langkabel. While the computing time multiplies with each additional atom for conventional methods, this is not the case for quantum algorithms, which makes them much faster.

Photocatalysis, light reception and more

The study thus shows a new way to calculate electron densities and their "response" to excitations with light in advance with very high spatial and temporal resolution. This makes it possible, for example, to simulate and understand ultrafast decay processes, which are also crucial in quantum computers made of so-called quantum dots. Also predictions about the physical or chemical behaviour of molecules are possible, for example during the absorption of light and the subsequent transfer of electrical charges. This could facilitate the development of photocatalysts for the production of green hydrogen with sunlight or help to understand processes in the light-sensitive receptor molecules in the eye.

arö

  • Copy link

You might also be interested in

  • Prashanth Menezes awarded prestigious VAIBHAV Fellowship by Government of India
    News
    09.10.2025
    Prashanth Menezes awarded prestigious VAIBHAV Fellowship by Government of India
    The Ministry of Science and Technology, Government of India, has announced the recipients of the Vaishvik Bhartiya Vaigyanik (VAIBHAV) Fellowship, a flagship initiative aimed at fostering collaboration between the Indian STEMM (Science, Technology, Engineering, Mathematics, and Medicine) diaspora and leading research institutions in India. Among the 2025 awardees is Dr. Prashanth W. Menezes, Head of the Department of Materials Chemistry for Catalysis at Helmholtz-Zentrum Berlin (HZB).
  • Sasol and HZB deepen collaboration with strategic focus on digitalisation
    News
    08.10.2025
    Sasol and HZB deepen collaboration with strategic focus on digitalisation
    Sasol Research & Technology and Helmholtz Zentrum Berlin (HZB) are expanding their partnership into the realm of digitalisation, building on their joint efforts in the CARE-O-SENE project and an Industrial Fellowship launched earlier this year. This new initiative marks a significant step forward in leveraging digital technologies to accelerate catalyst innovation and deepen scientific collaboration.
  • Technology Transfer Prize Ceremony 2025
    News
    07.10.2025
    Technology Transfer Prize Ceremony 2025
    This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.