4000th protein structure decoded at BESSY II

The 4000th protein structure from HZB BESSY published in PDB shows the G64S variant of FKBP51 in complex with the highly selective ligand SAFit (marked structure).

The 4000th protein structure from HZB BESSY published in PDB shows the G64S variant of FKBP51 in complex with the highly selective ligand SAFit (marked structure). © C. Meyners/TU Darmstadt/HZB

The 4000th structure is the molecule FKBP51, which is linked to stress-induced diseases such as depression, chronic pain and diabetes. The team led by Prof. Felix Hausch, TU Darmstadt, is using the knowledge of the three-dimensional structure to develop new strategies for the design of suitable drugs.

Many diseases are related to malfunctions of proteins in the organism. The three-dimensional architecture of these molecules is often extremely complex, but provides valuable clues as to how the malfunction could be remedied, for example by drugs that bind perfectly into a "pocket" on the target molecule and block the malfunction. The structure of proteins can be deciphered with X-ray analyses at the MX beamlines of BESSY II.

The 4000th structure from BESSY II has now been entered in the Protein Data Bank (www.rcsb.org/pdb), which contains all experimentally determined protein structures. The team led by Prof. Felix Hausch from TU Darmstadt had produced protein crystals from the molecule FKBP51 and examined them on the MX beamlines.

This is a protein that plays a special role in major health problems of our time. FKBP51 regulates the signal transduction of steroid hormone receptors, which can be disturbed by stress. This can trigger depression, chronic pain or diseases such as diabetes and obesity. The protein FKBP51 has shown promise as a target for drugs against these diseases. "Protein structure analysis shows us where interesting "pockets" are located in the molecule that could be drug targets," says Dr. Christian Meyners from the TU Darmstadt team.

arö

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.