TU Berlin appoints Renske van der Veen as professor

Dr. Renske van der Veen investigates catalytic processes at BESSY II, which are crucial for the production of green hydrogen, among other things.

Dr. Renske van der Veen investigates catalytic processes at BESSY II, which are crucial for the production of green hydrogen, among other things. © M: Setzpfandt/HZB

For the past two years, Dr Renske van der Veen has led a research group in time-resolved X-ray spectroscopy and electron microscopy at HZB. Her research focuses on catalytic processes that enable, for example, the production of green hydrogen. She has now been appointed to a S-W2 professorship at the Institute of Optics and Atomic Physics (IOAP) at the Technische Universität Berlin.

 

Dr Renske van der Veen specialises in ultrafast X-ray methods, which she uses at BESSY II to study the fast processes involved in catalysis. Van der Veen is also contributing her expertise to the scientific requirements profile for the successor X-ray source BESSY III.

Renske van der Veen studied at the ETH Zurich and completed her PhD at the École Polytechnique Fédérale de Lausanne (EPFL). She went on to do research at the California Institute of Technology, the Max Planck Institute for Biophysical Chemistry in Göttingen and the University of Illinois, where she was also an assistant professor. She has received the Alexander von Humboldt Foundation's Sofja Kovalevskaja Award and the Packard Fellowship for Science and Engineering.

arö

  • Copy link

You might also be interested in

  • Technology Transfer Prize Ceremony 2025
    News
    07.10.2025
    Technology Transfer Prize Ceremony 2025
    This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.
  • Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Science Highlight
    01.10.2025
    Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Researchers have for the first time measured the true properties of individual MXene flakes — an exciting new nanomaterial with potential for better batteries, flexible electronics, and clean energy devices. By using a novel light-based technique called spectroscopic micro-ellipsometry, they discovered how MXenes behave at the single-flake level, revealing changes in conductivity and optical response that were previously hidden when studying only stacked layers. This breakthrough provides the fundamental knowledge and tools needed to design smarter, more efficient technologies powered by MXenes. 
  • New HZB magazine "Lichtblick" has been published
    News
    18.09.2025
    New HZB magazine "Lichtblick" has been published
    In the new issue, we introduce our new commercial managing director. We also show how important exchange is to us: science thrives on fruitful exchange with others. But dialogue with the public is also very important to us. Art can also create enriching access to science and build bridges. All these topics are covered in the new issue of Lichtblick.