Catherine Dubourdieu erhält ERC Advanced Grant

Catherine Dubourdieu: Die Physikerin und Materialwissenschaftlerin erhält den ERC Advanced Grant in Höhe von 2,5 Mio. Euro über fünf Jahre für ihr Projekt LUCIOLE.

Catherine Dubourdieu: Die Physikerin und Materialwissenschaftlerin erhält den ERC Advanced Grant in Höhe von 2,5 Mio. Euro über fünf Jahre für ihr Projekt LUCIOLE. © Materials Research Society USA

Prof. Dr. Catherine Dubourdieu leitet am HZB das Institut für energieeffiziente Informationstechnik und ist Professorin am Fachbereich Physikalische und Theoretische Chemie der Freien Universität Berlin. Die Physikerin und Materialwissenschaftlerin hat sich auf funktionale Oxide und deren Anwendungen in der Informationstechnologie spezialisiert. Für ihr Forschungsprojekt LUCIOLE hat sie jetzt einen renommierten ERC Advanced Grant erhalten. LUCIOLE zielt darauf ab, ferroelektrische polare Texturen mit konventionellen Siliziumtechnologien zu kombinieren.

Das Projekt LUCIOLE konzentriert sich auf ferroelektrische nanometergroße Oxide, die exotische polare Texturen wie Wirbel oder Skyrmionen beherbergen. Solche Texturen können neuartige Anwendungen ermöglichen, zum Beispiel ultrakompakte Speicher, die mehr als ein Terabyte pro Quadratzoll speichern. „Wir wollen den Weg für künftige stromsparende Nanoelektronik auf Grundlage topologischer Defekte ebnen“, sagt Catherine Dubourdieu.

Monolithisch integrierte polare Texturen auf Silizium werden mit modernsten Mikroskopie- und Spektroskopietechniken auf Nanoebene erzeugt und untersucht. Diese Polarisationsmuster werden in Bauelementen integriert, um zu untersuchen, wie sie sich manipulieren und kontrollieren lassen.

„Wir kennen das Phänomen der Ferroelektrizität schon seit gut hundert Jahren. Aber erst in den letzten Jahren wurden exotische polare Strukturen entdeckt, die revolutionäre neue Materialien und Bauelemente in Aussicht stellen. Jetzt ist definitiv die beste Zeit, um in diesem Forschungsfeld an vorderster Front mitzuarbeiten“, sagt Dubourdieu.

LUCIOLE: Layering, Understanding, Controlling and Integrating Ferroelectric Polar Textures on Silicon.

Newsmeldungen des ERC

Mit ERC Grants fördert der European Research Council herausragende Wissenschaftlerinnen und Wissenschaftler, die risikoreiche aber möglicherweise bahnbrechende Forschungsideen umsetzen wollen. Ein ERC Advanced Grant gilt als eine der höchsten Auszeichnungen für erfahrene Forschende.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.