Humboldt Fellow joins HZB for battery research

Dr. Wenxi Wang specialises in the design of organic electrodes for lithium-sulfur and zinc-ion batteries and investigates interactions between ions and active materials.

Dr. Wenxi Wang specialises in the design of organic electrodes for lithium-sulfur and zinc-ion batteries and investigates interactions between ions and active materials. © arö/HZB

Dr. Wenxi Wang is working in the team of Prof. Yan Lu as Humboldt Foundation postdoctoral fellow. He studied at the Southern University of Science and Technology in Shenzhen, China, and completed his doctorate at the King Abdullah University of Science and Technology in Saudi Arabia. He specialises in the precise design of organic electrodes for lithium-sulfur and zinc-ion batteries and the investigation of the interactions between ions and active materials.

"At Helmholtz-Zentrum Berlin I find excellent conditions to deepen my research," says Wenxi Wang. Prof. Yan Lu's group has extensive experience in the synthesis and characterisation of novel electrode materials and state-of-the-art infrastructures for battery research. In addition, the X-ray source BESSY II at HZB offers a variety of spectroscopic methods to analyse electrochemical reactions in real time.

Lithium-sulfur (Li-S) batteries are considered one of the most interesting technologies to replace lithium-ion batteries due to their extremely high energy density and cheap starting materials. However, their performance still falls far short of expectations due, in part due to polysulfide intermediates that form during charging cycles. Porous host materials can trap such polysulfides, improving the energy density and lifetime of Li-S batteries. "My research project focuses on the precise design of organic-based host materials with suitable pore sizes and functional groups (Covalent Organic Frameworks, COF) to enable high-performance Li-S batteries and deepen our understanding of their mechanisms," says Wang.

arö

  • Copy link

You might also be interested in

  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • Two precision mechanics from HZB are Berlin's best trainees
    Interview
    30.10.2025
    Two precision mechanics from HZB are Berlin's best trainees
    Two former apprentices from the HZB workshop have achieved something remarkable: Fiete Buchin and Edgar Lunk completed their training as precision mechanics, taking first and second place in all of Berlin. In this interview, they share what it took to reach the top, what makes their training special, and the advice they would give to future apprentices.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!